neraly complete Model of Driving done, but needs tweaking

This commit is contained in:
2025-09-05 14:54:29 +02:00
parent 0276a3fb3c
commit 6108413d7e
12 changed files with 1469 additions and 726 deletions

View File

@@ -95,18 +95,39 @@ def launch_gui():
path = filedialog.askopenfilename(filetypes=[("JSON","*.json"),("All","*.*")])
if not path: return
with open(path,"r",encoding="utf-8") as f: data = json.load(f)
for t in ui_tabs:
if hasattr(t, "load_from_config"): t.load_from_config(data)
# NEU: sowohl altes (flach) als auch neues Format ("sim"/"app") akzeptieren
sim_block = data.get("sim") if isinstance(data, dict) else None
if sim_block:
sim.load_config(sim_block)
else:
sim.load_config(data)
messagebox.showinfo("Simulator", "Konfiguration geladen.")
def do_save():
cfg_out = sim.export_config()
# Tabs dürfen zusätzliche eigene Daten ziehen
for t in ui_tabs:
if hasattr(t, "save_into_config"): t.save_into_config(cfg_out)
if hasattr(t, "load_from_config"):
t.load_from_config(sim_block or data)
messagebox.showinfo("Simulator", "Konfiguration geladen.")
def do_save():
# NEU: vollständige Sim-Config (inkl. Defaults) + App-Settings bündeln
sim_out = sim.export_config()
for t in ui_tabs:
if hasattr(t, "save_into_config"):
t.save_into_config(sim_out)
out = {
"app": cfg, # aktuelle App-Settings (CAN/UI/Logging etc.)
"sim": sim_out, # vollständige Modul-Configs (mit Defaults)
}
path = filedialog.asksaveasfilename(defaultextension=".json", filetypes=[("JSON","*.json")])
if not path: return
with open(path,"w",encoding="utf-8") as f: json.dump(cfg_out, f, indent=2)
with open(path,"w",encoding="utf-8") as f: json.dump(out, f, indent=2)
messagebox.showinfo("Simulator", "Konfiguration gespeichert.")
filemenu.add_command(label="Konfiguration laden…", command=do_load)
filemenu.add_command(label="Konfiguration speichern…", command=do_save)
filemenu.add_separator(); filemenu.add_command(label="Beenden", command=root.destroy)

View File

@@ -1,58 +1,56 @@
# =============================
# app/simulation/modules/basic.py
# =============================
from __future__ import annotations
from app.simulation.simulator import Module, Vehicle
import bisect
import bisect, math
def _ocv_from_soc(soc: float, table: dict[float, float]) -> float:
# table: {SOC: OCV} unsortiert → linear interpolieren
xs = sorted(table.keys())
ys = [table[x] for x in xs]
s = max(0.0, min(1.0, soc))
s = 0.0 if soc is None else max(0.0, min(1.0, float(soc)))
i = bisect.bisect_left(xs, s)
if i <= 0: return ys[0]
if i >= len(xs): return ys[-1]
x0, x1 = xs[i-1], xs[i]
y0, y1 = ys[i-1], ys[i]
x0, x1 = xs[i-1], xs[i]; y0, y1 = ys[i-1], ys[i]
t = 0.0 if x1 == x0 else (s - x0) / (x1 - x0)
return y0 + t * (y1 - y0)
class BasicModule(Module):
PRIO = 10
PRIO = 90
NAME = "basic"
"""
- Zündungslogik inkl. START→ON nach crank_time_s
- Ambient-Temperatur als globale Umweltgröße
- Elektrik:
* Load/Source-Aggregation via Vehicle-Helpers
* Lichtmaschine drehzahlabhängig, Regler auf alternator_reg_v
* Batterie: Kapazität (Ah), Innenwiderstand, OCV(SOC); I_batt > 0 => Entladung
"""
def __init__(self):
self.crank_time_s = 2.7
self._crank_timer = 0.0
def apply(self, v: Vehicle, dt: float) -> None:
# ----- Dashboard registration (unverändert) -----
# Dashboard
v.register_metric("ignition", label="Zündung", source="basic", priority=5)
v.register_metric("ambient_c", label="Umgebung", unit="°C", fmt=".1f", source="basic", priority=7)
v.register_metric("battery_voltage", label="Batteriespannung", unit="V", fmt=".2f", source="basic", priority=8)
v.register_metric("elx_voltage", label="ELX-Spannung", unit="V", fmt=".2f", source="basic", priority=10)
v.register_metric("system_voltage", label="Systemspannung", unit="V", fmt=".2f", source="basic", priority=11)
v.register_metric("battery_soc", label="Batterie SOC", unit="", fmt=".2f", source="basic", priority=12)
v.register_metric("battery_soc", label="Batterie SOC", fmt=".3f", source="basic", priority=12)
v.register_metric("battery_current_a", label="Batterie Strom", unit="A", fmt=".2f", source="basic", priority=13)
v.register_metric("alternator_current_a", label="Lima Strom", unit="A", fmt=".2f", source="basic", priority=14)
v.register_metric("elec_load_total_a", label="Verbrauch ges.", unit="A", fmt=".2f", source="basic", priority=15)
v.register_metric("elec_load_total_a", label="Verbrauch netto", unit="A", fmt=".2f", source="basic", priority=15)
# neue Detailmetriken (optional in UI)
v.register_metric("elec_load_elx_a", label="Verbrauch ELX", unit="A", fmt=".2f", source="basic", priority=16)
v.register_metric("elec_load_batt_a", label="Verbrauch Batt", unit="A", fmt=".2f", source="basic", priority=17)
# ----- Read config/state -----
# Config
econf = v.config.get("electrical", {})
alt_reg_v = float(econf.get("alternator_reg_v", 14.2))
alt_rated_a = float(econf.get("alternator_rated_a", 20.0))
alt_cut_in = int(econf.get("alt_cut_in_rpm", 1500))
alt_full = int(econf.get("alt_full_rpm", 4000))
alt_eta_mech = float(econf.get("alternator_mech_efficiency", 0.55))
alt_ratio = float(econf.get("alternator_pulley_ratio", 1.0))
alt_drag_c0 = float(econf.get("alternator_drag_nm_idle", 0.15))
alt_drag_c1 = float(econf.get("alternator_drag_nm_per_krpm", 0.05))
batt_cap_ah = float(econf.get("battery_capacity_ah", 8.0))
batt_rint = float(econf.get("battery_r_int_ohm", 0.020))
batt_ocv_tbl = dict(econf.get("battery_ocv_v", {})) or {
@@ -60,87 +58,128 @@ class BasicModule(Module):
0.5: 12.45, 0.6: 12.55, 0.7: 12.65, 0.8: 12.75, 0.9: 12.85, 1.0: 12.95
}
# State
prev_ign = str(v.ensure("prev_ignition", v.get("ignition", "ON")))
ign = v.ensure("ignition", "ON")
rpm = float(v.ensure("rpm", 1200))
v.set("prev_ignition", ign)
rpm = float(v.ensure("rpm", 1200.0))
soc = float(v.ensure("battery_soc", 0.80))
v.set("ambient_c", float(v.ensure("ambient_c", v.get("ambient_c", 20.0))))
# ----- START auto-fall to ON -----
# START → ON Auto-Übergang
if ign == "START":
if self._crank_timer <= 0.0:
self._crank_timer = float(self.crank_time_s)
else:
self._crank_timer -= dt
if self._crank_timer <= 0.0:
v.set("ignition", "ON")
ign = "ON"
v.set("ignition", "ON"); ign = "ON"
else:
self._crank_timer = 0.0
# ----- Früh-Exit: OFF/ACC -> Bus AUS, Batterie „ruht“ -----
# --- Akkumulierte Lasten aus beiden Bussen ---
# Verbraucher pushen jetzt wahlweise:
# - v.push("elec.current_elx", +A, source="...")
# - v.push("elec.current_batt", +A, source="...")
elx_load_a = max(0.0, v.acc_total("elec.current_elx"))
batt_load_a = max(0.0, v.acc_total("elec.current_batt"))
# Grundlast hängt an ELX (nur bei ON/START aktiv)
if ign in ("ON", "START"):
v.push("elec.current_elx", +0.5, source="basic:base")
# --- OFF/ACC: ELX tot, Batterie lebt weiter ---
if ign in ("OFF", "ACC"):
# nur Batteriepfad zählt
total_batt_a = max(0.0, v.acc_total("elec.current_batt"))
ocv = _ocv_from_soc(soc, batt_ocv_tbl)
# Batterie entspannt sich langsam gegen OCV (optional, super simpel):
# (man kann hier auch gar nichts tun; ich halte batt_v = ocv für okay)
batt_v = ocv
v.set("battery_voltage", round(batt_v, 2))
v.set("elx_voltage", 0.0)
v.set("system_voltage", 0.0)
v.set("battery_current_a", 0.0)
# Batterie entlädt nach I*dt
batt_i = total_batt_a
soc = max(0.0, min(1.0, soc - (batt_i * dt) / (3600.0 * max(0.1, batt_cap_ah))))
batt_v = ocv - batt_i * batt_rint
batt_v = max(10.0, min(15.5, batt_v))
v.set("battery_voltage", batt_v)
v.set("elx_voltage", 0.0) # Bus aus
v.set("system_voltage", batt_v) # für „alles was noch lebt“ = Batterie
v.set("battery_soc", soc)
v.set("battery_current_a", batt_i)
v.set("alternator_current_a", 0.0)
v.set("elec_load_total_a", 0.0)
v.set("battery_soc", round(soc, 3))
v.set("elec_load_elx_a", 0.0)
v.set("elec_load_batt_a", total_batt_a)
v.set("elec_load_total_a", total_batt_a)
# keine Limamechanik aktiv
v.set("engine_ext_torque_nm", 0.0)
return
# ----- ON/START: Elektrik-Bilanz -----
# Beiträge anderer Module summieren
loads_a, sources_a = v.elec_totals()
# Grundlasten (z.B. ECU, Relais)
base_load = 0.5 if ign == "ON" else 0.6 # START leicht höher
loads_a += base_load
# Quellen anderer Module (z.B. DC-DC) können sources_a > 0 machen
# Wir ziehen Quellen von der Last ab was übrig bleibt, muss Lima/Batterie liefern
net_load_a = max(0.0, loads_a - sources_a)
# --- Ab hier: Zündung ON/START (ELX aktiv) ---
elx_load_a = max(0.0, v.acc_total("elec.current_elx"))
batt_load_a = max(0.0, v.acc_total("elec.current_batt"))
net_load_a = elx_load_a + batt_load_a # Gesamtverbrauch
# Lima-Fähigkeit aus rpm
if rpm >= alt_cut_in:
frac = 0.0 if rpm <= alt_cut_in else (rpm - alt_cut_in) / max(1, (alt_full - alt_cut_in))
frac = max(0.0, min(1.0, frac))
alt_cap_a = alt_rated_a * frac
else:
# 3) Lima-Kapazität
if rpm < alt_cut_in:
alt_cap_a = 0.0
elif rpm >= alt_full:
alt_cap_a = alt_rated_a
else:
frac = (rpm - alt_cut_in) / max(1, (alt_full - alt_cut_in))
alt_cap_a = alt_rated_a * max(0.0, min(1.0, frac))
# Batterie-OCV
ocv = _ocv_from_soc(soc, batt_ocv_tbl)
desired_charge_a = ((alt_reg_v - ocv) / batt_rint) if alt_cap_a > 0.0 else 0.0
if desired_charge_a < 0.0: desired_charge_a = 0.0
# Ziel: Regler hält alt_reg_v aber nur, wenn die Lima überhaupt aktiv ist
desired_charge_a = max(0.0, (alt_reg_v - ocv) / max(1e-4, batt_rint)) if alt_cap_a > 0.0 else 0.0
alt_needed_a = net_load_a + desired_charge_a
alt_i = min(alt_needed_a, alt_cap_a)
alt_i = min(alt_needed_a, alt_cap_a) if alt_cap_a > 0.0 else 0.0
# Batterie-Bilanz
if alt_cap_a > 0.0 and alt_i >= net_load_a:
# Lima deckt alles; Überschuss lädt Batterie
batt_i = -(alt_i - net_load_a) # negativ = lädt
# Lima liefert in ELX-Bus (Quelle = negativ)
if alt_i > 0.0:
v.push("elec.current_elx", -alt_i, source="alternator")
# Rest geht von Batterie (angenommen gleicher Bus)
remaining = net_load_a - alt_i
if alt_cap_a > 0.0 and remaining <= 0.0:
# Überschuss -> lädt Batt (wir zählen Lade-Strom negativ am Batterieklemmen)
batt_i = remaining # ≤ 0
bus_v = alt_reg_v
else:
# Lima (falls vorhanden) reicht nicht -> Batterie liefert Defizit
deficit = net_load_a - alt_i
batt_i = max(0.0, deficit) # positiv = entlädt
batt_i = max(0.0, remaining)
bus_v = ocv - batt_i * batt_rint
# SOC-Update (Ah-Bilanz)
# SOC integrieren
soc = max(0.0, min(1.0, soc - (batt_i * dt) / (3600.0 * max(0.1, batt_cap_ah))))
batt_v = ocv - (batt_i * batt_rint)
batt_v = ocv - batt_i * batt_rint
# Klammern/Spiegeln
# Clamps
batt_v = max(10.0, min(15.5, batt_v))
bus_v = max(0.0, min(15.5, bus_v))
v.set("battery_voltage", round(batt_v, 2))
v.set("elx_voltage", round(bus_v, 2))
v.set("system_voltage", round(bus_v, 2))
v.set("battery_soc", round(soc, 3))
v.set("battery_current_a", round(batt_i, 2))
v.set("alternator_current_a", round(min(alt_i, alt_cap_a), 2))
v.set("elec_load_total_a", round(net_load_a, 2))
# Mechanische Last Lima
tau_base = 0.0
if rpm > 0.0:
tau_base = alt_drag_c0 + (rpm / 1000.0) * alt_drag_c1
omega_engine = 2.0 * math.pi * max(0.0, rpm) / 60.0
omega_alt = omega_engine * max(0.1, alt_ratio)
tau_el = 0.0
if alt_i > 0.0 and omega_alt > 1e-2 and alt_eta_mech > 0.05:
p_el = alt_i * bus_v
p_mech = p_el / alt_eta_mech
tau_el = p_mech / omega_alt
tau_alt = max(0.0, tau_base) + max(0.0, tau_el)
if tau_alt > 0.0:
v.push("engine.torque_load_nm", +tau_alt, source="alternator")
# Outputs
v.set("battery_voltage", batt_v)
v.set("elx_voltage", bus_v)
v.set("system_voltage", bus_v)
v.set("battery_soc", soc)
v.set("battery_current_a", batt_i)
v.set("alternator_current_a", min(alt_i, alt_cap_a))
v.set("elec_load_elx_a", elx_load_a)
v.set("elec_load_batt_a", batt_load_a)
v.set("elec_load_total_a", net_load_a)

View File

@@ -0,0 +1,202 @@
# =============================
# app/simulation/modules/cooling.py
# =============================
from __future__ import annotations
from app.simulation.simulator import Module, Vehicle
import math
COOLING_DEFAULTS = {
# Thermostat
"thermostat_open_c": 85.0,
"thermostat_full_c": 100.0,
# Radiator & Fahrtwind (W/K)
"rad_base_u_w_per_k": 150.0,
"ram_air_gain_per_kmh": 5.0,
# Lüfterstufe 1
"fan1_on_c": 96.0,
"fan1_off_c": 92.0,
"fan1_power_w": 120.0,
"fan1_airflow_gain": 250.0,
# Lüfterstufe 2
"fan2_on_c": 102.0,
"fan2_off_c": 98.0,
"fan2_power_w": 180.0,
"fan2_airflow_gain": 400.0,
# Wärmekapazitäten (J/K)
"coolant_thermal_cap_j_per_k": 90_000.0,
"oil_thermal_cap_j_per_k": 75_000.0,
# Öl↔Kühlmittel Kopplung / kleine Öl-Abstrahlung
"oil_coolant_u_w_per_k": 120.0,
"oil_to_amb_u_w_per_k": 10.0,
# Anteil der Motorwärme ans Kühlmittel
"engine_heat_frac_to_coolant": 0.7,
# Versorgung / Nachlauf
"fan_power_feed": "elx", # "elx" oder "battery"
"fan_afterrun_enable": False,
"fan_afterrun_threshold_c": 105.0,
"fan_afterrun_max_s": 300.0
}
class CoolingModule(Module):
PRIO = 25
NAME = "cooling"
def apply(self, v: Vehicle, dt: float) -> None:
# --- Config lesen
cfg = dict(COOLING_DEFAULTS);
cfg.update(v.config.get("cooling", {}))
# --- Dashboard-Metriken registrieren (einmal pro Tick ist ok, Idempotenz erwartet) ---
# Temps
v.register_metric("coolant_temp", unit="°C", fmt=".1f", label="Kühlmitteltemp.", source="cooling", priority=30)
v.register_metric("oil_temp", unit="°C", fmt=".1f", label="Öltemperatur", source="cooling", priority=31)
# Thermostat & Kühlerwirkung
v.register_metric("thermostat_open_pct", unit="%", fmt=".0f", label="Thermostat Öffnung", source="cooling", priority=32)
v.register_metric("cooling_u_eff_w_per_k", unit="W/K", fmt=".0f", label="Eff. Kühlerleistung", source="cooling", priority=33)
# Lüfterzustände + Last
v.register_metric("fan1_on", unit="", fmt="", label="Lüfter 1", source="cooling", priority=34)
v.register_metric("fan2_on", unit="", fmt="", label="Lüfter 2", source="cooling", priority=35)
v.register_metric("cooling_fan_power_w", unit="W", fmt=".0f", label="Lüfterleistung", source="cooling", priority=36)
v.register_metric("cooling_fan_current_a", unit="A", fmt=".2f", label="Lüfterstrom", source="cooling", priority=37)
# --- Konfigurationsparameter ---
t_open = float(cfg.get("thermostat_open_c", COOLING_DEFAULTS["thermostat_open_c"]))
t_full = float(cfg.get("thermostat_full_c", COOLING_DEFAULTS["thermostat_full_c"]))
rad_base = float(cfg.get("rad_base_u_w_per_k", COOLING_DEFAULTS["rad_base_u_w_per_k"]))
ram_gain = float(cfg.get("ram_air_gain_per_kmh", COOLING_DEFAULTS["ram_air_gain_per_kmh"]))
f1_on = float(cfg.get("fan1_on_c", COOLING_DEFAULTS["fan1_on_c"])); f1_off = float(cfg.get("fan1_off_c", COOLING_DEFAULTS["fan1_off_c"]))
f1_w = float(cfg.get("fan1_power_w", COOLING_DEFAULTS["fan1_power_w"])); f1_air = float(cfg.get("fan1_airflow_gain", COOLING_DEFAULTS["fan1_airflow_gain"]))
f2_on = float(cfg.get("fan2_on_c", COOLING_DEFAULTS["fan2_on_c"])); f2_off = float(cfg.get("fan2_off_c", COOLING_DEFAULTS["fan2_off_c"]))
f2_w = float(cfg.get("fan2_power_w", COOLING_DEFAULTS["fan2_power_w"])); f2_air = float(cfg.get("fan2_airflow_gain", COOLING_DEFAULTS["fan2_airflow_gain"]))
Cc = float(cfg.get("coolant_thermal_cap_j_per_k", COOLING_DEFAULTS["coolant_thermal_cap_j_per_k"]))
Coil = float(cfg.get("oil_thermal_cap_j_per_k", COOLING_DEFAULTS["oil_thermal_cap_j_per_k"]))
Uoc = float(cfg.get("oil_coolant_u_w_per_k", COOLING_DEFAULTS["oil_coolant_u_w_per_k"]))
Uoil_amb = float(cfg.get("oil_to_amb_u_w_per_k", COOLING_DEFAULTS["oil_to_amb_u_w_per_k"]))
frac_to_coolant = float(cfg.get("engine_heat_frac_to_coolant", COOLING_DEFAULTS["engine_heat_frac_to_coolant"]))
# Versorgung / Nachlauf
feed = str(cfg.get("fan_power_feed", COOLING_DEFAULTS["fan_power_feed"]))
allow_ar = bool(cfg.get("fan_afterrun_enable", COOLING_DEFAULTS["fan_afterrun_enable"]))
ar_thr = float(cfg.get("fan_afterrun_threshold_c", COOLING_DEFAULTS["fan_afterrun_threshold_c"]))
ar_max = float(cfg.get("fan_afterrun_max_s", COOLING_DEFAULTS["fan_afterrun_max_s"]))
ign = str(v.ensure("ignition", "OFF"))
# --- State / Inputs ---
amb = float(v.ensure("ambient_c", 20.0))
speed = float(v.ensure("speed_kmh", 0.0))
elx_v = float(v.get("elx_voltage", 0.0)) or 0.0
batt_v= float(v.get("battery_voltage", 12.5)) or 12.5
# Temperaturen liegen hier (Cooling ist Owner)
Tcool = float(v.ensure("coolant_temp", amb))
Toil = float(v.ensure("oil_temp", amb))
# vom Motor gepushte Wärmeleistung (W); nur positive Leistung wird aufgeteilt
q_in_total = v.acc_total("thermal.heat_w")
q_cool_in = max(0.0, q_in_total) * frac_to_coolant
q_oil_in = max(0.0, q_in_total) * (1.0 - frac_to_coolant)
# --- Thermostat-Öffnung (0..1) ---
if Tcool <= t_open: tfrac = 0.0
elif Tcool >= t_full: tfrac = 1.0
else: tfrac = (Tcool - t_open) / max(1e-6, (t_full - t_open))
# --- Lüfter-Hysterese ---
fan1_on_prev = bool(v.ensure("fan1_on", False))
fan2_on_prev = bool(v.ensure("fan2_on", False))
fan1_on = fan1_on_prev
fan2_on = fan2_on_prev
if tfrac > 0.0:
if not fan1_on and Tcool >= f1_on: fan1_on = True
if fan1_on and Tcool <= f1_off: fan1_on = False
if not fan2_on and Tcool >= f2_on: fan2_on = True
if fan2_on and Tcool <= f2_off: fan2_on = False
else:
fan1_on = False; fan2_on = False
# --- Nachlauf-Entscheidung ---
# Basis: Lüfter je nach Temp/Hysterese an/aus (fan1_on/fan2_on).
# Jetzt prüfen, ob die *Versorgung* verfügbar ist:
# - feed=="elx": nur wenn ign in ("ON","START") und elx_v > 1V
# - feed=="battery": immer, aber bei OFF nur wenn allow_afterrun & heiß
fans_request = (fan1_on or fan2_on)
fans_powered = False
bus_for_fans = "elx"
bus_v = elx_v
if feed == "elx":
if ign in ("ON","START") and elx_v > 1.0 and fans_request:
fans_powered = True
bus_for_fans = "elx"; bus_v = elx_v
else: # battery
if ign in ("ON","START"):
if fans_request:
fans_powered = True
bus_for_fans = "batt"; bus_v = batt_v
self._afterrun_timer_s = 0.0
else:
# OFF/ACC -> Nachlauf, wenn erlaubt und heiß
hot = (Tcool >= ar_thr)
if allow_ar and (hot or self._afterrun_timer_s > 0.0):
if self._afterrun_timer_s <= 0.0:
self._afterrun_timer_s = ar_max
if fans_request or hot:
fans_powered = True
bus_for_fans = "batt"; bus_v = batt_v
self._afterrun_timer_s = max(0.0, self._afterrun_timer_s - dt)
else:
self._afterrun_timer_s = 0.0
# --- Eff. Kühlerleistung (W/K) ---
U_rad = (rad_base + ram_gain * max(0.0, speed)) * tfrac
if fan1_on: U_rad += f1_air
if fan2_on: U_rad += f2_air
# --- Elektrische Last je nach Bus ---
fan_power_w = 0.0
if fans_powered and bus_v > 1.0:
if fan1_on: fan_power_w += f1_w
if fan2_on: fan_power_w += f2_w
if fan_power_w > 0.0:
i = fan_power_w / bus_v
if bus_for_fans == "elx":
v.push("elec.current_elx", +i, source="fan")
else:
v.push("elec.current_batt", +i, source="fan_afterrun" if ign in ("OFF","ACC") else "fan")
# --- Wärmeströme (positiv Richtung Medium) ---
q_rad = - max(0.0, U_rad * (Tcool - amb)) # Kühler zieht aus Kühlmittel
q_oil_x = - Uoc * (Toil - Tcool) # Öl↔Kühlmittel
q_oil_amb = - max(0.0, Uoil_amb * (Toil - amb)) # Öl an Umgebung
# --- Integration ---
dT_cool = (q_cool_in + q_rad - q_oil_x) * dt / max(1e-3, Cc)
dT_oil = (q_oil_in + q_oil_x + q_oil_amb) * dt / max(1e-3, Coil)
Tcool += dT_cool
Toil += dT_oil
# --- Setzen & Dashboard-Infos ---
v.set("coolant_temp", float(Tcool))
v.set("oil_temp", float(Toil))
# Anzeige-friendly zusätzlich in %
v.set("thermostat_open_pct", float(tfrac * 100.0))
v.set("cooling_u_eff_w_per_k", float(U_rad))
v.set("fan1_on", bool(fan1_on))
v.set("fan2_on", bool(fan2_on))
v.set("cooling_fan_power_w", float(fan_power_w))
v.set("cooling_fan_current_a", float(fan_power_w / max(1.0, bus_v)))

View File

@@ -4,9 +4,8 @@
from __future__ import annotations
from app.simulation.simulator import Module, Vehicle
import random, math
import math, random
# Ein einziger Wahrheitsanker für alle Defaults:
ENGINE_DEFAULTS = {
# Basis
"idle_rpm": 1200,
@@ -14,38 +13,41 @@ ENGINE_DEFAULTS = {
"rpm_rise_per_s": 4000,
"rpm_fall_per_s": 3000,
"throttle_curve": "linear",
# Starter
# Starter / Startlogik
"starter_rpm_nominal": 250.0,
"starter_voltage_min": 10.5,
"start_rpm_threshold": 250.0, # <- fix niedriger, damit anspringt
"start_rpm_threshold": 210.0,
"stall_rpm": 500.0,
# Thermik
# Thermische Einflüsse (nur fürs Derating/Viskosität benutzt)
"coolant_ambient_c": 20.0,
"coolant_warm_rate_c_per_s": 0.35,
"coolant_cool_rate_c_per_s": 0.06,
"oil_warm_rate_c_per_s": 0.30,
"oil_cool_rate_c_per_s": 0.05,
"idle_cold_gain_per_deg": 3.0,
"idle_cold_gain_max": 500.0,
# Öl
# Öl / Öldruck
"oil_pressure_idle_bar": 1.2,
"oil_pressure_slope_bar_per_krpm": 0.8,
"oil_pressure_off_floor_bar": 0.2,
# Leistung
# Leistungsdaten
"engine_power_kw": 60.0,
"torque_peak_rpm": 7000.0,
# DBW
# Drive-by-wire / Regler
"throttle_plate_idle_min_pct": 6.0,
"throttle_plate_overrun_pct": 2.0,
"throttle_plate_tau_s": 0.08,
"torque_ctrl_kp": 1.2,
"torque_ctrl_ki": 0.6,
# Jitter
# RPM-Jitter
"rpm_jitter_idle_amp_rpm": 12.0,
"rpm_jitter_high_amp_rpm": 4.0,
"rpm_jitter_tau_s": 0.20,
"rpm_jitter_off_threshold_rpm": 250.0,
# UI-Startwert (nur Anzeige)
# UI
"throttle_pedal_pct": 0.0,
}
@@ -71,17 +73,15 @@ class EngineModule(Module):
"""
def __init__(self):
self._target = None
self._running = False
self._oil_p_tau = 0.25 # s, Annäherung Öldruck
# Drive-by-Wire interner Zustand
self._plate_pct = 5.0 # Startwert, leicht geöffnet
self._tc_i = 0.0 # Integrator PI-Regler
# bandbegrenztes RPM-Rauschen (AR(1))
self._oil_p_tau = 0.25 # Zeitkonstante Öldruck
# DBW intern
self._plate_pct = 5.0
self._tc_i = 0.0
# AR(1)-Noise
self._rpm_noise = 0.0
# ---- helpers ----------------------------------------------------------
def _curve(self, t: float, mode: str) -> float:
if mode == "progressive": return t**1.5
if mode == "aggressive": return t**0.7
@@ -90,34 +90,34 @@ class EngineModule(Module):
def _torque_at_rpm(self, power_kw: float, rpm: float, peak_rpm: float) -> float:
rpm = max(0.0, rpm)
t_max = (9550.0 * max(0.0, power_kw)) / max(500.0, peak_rpm)
# einfache „Glocke“
x = min(math.pi, max(0.0, (rpm / max(1.0, peak_rpm)) * (math.pi/2)))
shape = math.sin(x)
return max(0.0, t_max * shape)
return max(0.0, t_max * math.sin(x))
def _plate_airflow_factor(self, plate_pct: float) -> float:
"""
Näherung Volumenstrom ~ sin^2(θ) mit θ aus 0..90° (hier 0..100%).
0% ≈ geschlossen (fast null), 100% ≈ voll offen (~1.0).
"""
theta = max(0.0, min(90.0, (plate_pct/100.0)*90.0)) * math.pi/180.0
return math.sin(theta)**2
def _visco(self, temp_c: float) -> float:
# -10°C -> 0.6 … 20°C -> 0.8 … 90°C -> 1.0
if temp_c <= -10: return 0.6
if temp_c >= 90: return 1.0
if temp_c <= 20: return 0.6 + (temp_c + 10.0) * (0.2/30.0)
return 0.8 + (temp_c - 20.0) * (0.2/70.0)
# ---- main -------------------------------------------------------------
def apply(self, v: Vehicle, dt: float) -> None:
e = v.config.setdefault("engine", {})
# --- Config / Defaults ---
idle = int(e.get("idle_rpm", ENGINE_DEFAULTS["idle_rpm"]))
maxr = int(e.get("max_rpm", ENGINE_DEFAULTS["max_rpm"]))
rise = int(e.get("rpm_rise_per_s", ENGINE_DEFAULTS["rpm_rise_per_s"]))
fall = int(e.get("rpm_fall_per_s", ENGINE_DEFAULTS["rpm_fall_per_s"]))
# --- Config ---
idle = float(e.get("idle_rpm", ENGINE_DEFAULTS["idle_rpm"]))
maxr = float(e.get("max_rpm", ENGINE_DEFAULTS["max_rpm"]))
rise = float(e.get("rpm_rise_per_s", ENGINE_DEFAULTS["rpm_rise_per_s"]))
fall = float(e.get("rpm_fall_per_s", ENGINE_DEFAULTS["rpm_fall_per_s"]))
thr_curve = e.get("throttle_curve", ENGINE_DEFAULTS["throttle_curve"])
ambient = float(e.get("coolant_ambient_c", ENGINE_DEFAULTS["coolant_ambient_c"]))
warm_c = float(e.get("coolant_warm_rate_c_per_s", ENGINE_DEFAULTS["coolant_warm_rate_c_per_s"]))
cool_c = float(e.get("coolant_cool_rate_c_per_s", ENGINE_DEFAULTS["coolant_cool_rate_c_per_s"]))
warm_o = float(e.get("oil_warm_rate_c_per_s", ENGINE_DEFAULTS["oil_warm_rate_c_per_s"]))
cool_o = float(e.get("oil_cool_rate_c_per_s", ENGINE_DEFAULTS["oil_cool_rate_c_per_s"]))
cold_gain_per_deg = float(e.get("idle_cold_gain_per_deg", ENGINE_DEFAULTS["idle_cold_gain_per_deg"]))
cold_gain_max = float(e.get("idle_cold_gain_max", ENGINE_DEFAULTS["idle_cold_gain_max"]))
starter_nom = float(e.get("starter_rpm_nominal", ENGINE_DEFAULTS["starter_rpm_nominal"]))
starter_vmin= float(e.get("starter_voltage_min", ENGINE_DEFAULTS["starter_voltage_min"]))
@@ -127,9 +127,6 @@ class EngineModule(Module):
power_kw = float(e.get("engine_power_kw", ENGINE_DEFAULTS["engine_power_kw"]))
peak_torque_rpm = float(e.get("torque_peak_rpm", ENGINE_DEFAULTS["torque_peak_rpm"]))
cold_gain_per_deg = float(e.get("idle_cold_gain_per_deg", ENGINE_DEFAULTS["idle_cold_gain_per_deg"]))
cold_gain_max = float(e.get("idle_cold_gain_max", ENGINE_DEFAULTS["idle_cold_gain_max"]))
oil_idle_bar = float(e.get("oil_pressure_idle_bar", ENGINE_DEFAULTS["oil_pressure_idle_bar"]))
oil_slope_bar_per_krpm = float(e.get("oil_pressure_slope_bar_per_krpm", ENGINE_DEFAULTS["oil_pressure_slope_bar_per_krpm"]))
oil_floor_off = float(e.get("oil_pressure_off_floor_bar", ENGINE_DEFAULTS["oil_pressure_off_floor_bar"]))
@@ -146,183 +143,145 @@ class EngineModule(Module):
jitter_off_rpm = float(e.get("rpm_jitter_off_threshold_rpm", ENGINE_DEFAULTS["rpm_jitter_off_threshold_rpm"]))
# --- State ---
rpm = float(v.ensure("rpm", 0))
# Fahrerwunsch (kommt aus dem UI-Schieber)
rpm = float(v.ensure("rpm", 0.0))
pedal = float(v.ensure("throttle_pedal_pct", float(e.get("throttle_pedal_pct", 0.0))))
pedal = max(0.0, min(100.0, pedal))
load = float(v.ensure("engine_load", 0.0))
ign = str(v.ensure("ignition", "OFF"))
elx_v = float(v.ensure("elx_voltage", 0.0))
cool = float(v.ensure("coolant_temp", ambient))
oil = float(v.ensure("oil_temp", ambient))
cool = float(v.ensure("coolant_temp", ambient)) # nur lesen
oil = float(v.ensure("oil_temp", ambient)) # nur lesen
oil_p = float(v.ensure("oil_pressure", 0.0))
ext_torque = float(v.ensure("engine_ext_torque_nm", 0.0))
# externe Momente (Alternator/Getriebe/…)
torque_load = max(0.0, v.acc_total("engine.torque_load_nm"))
torque_load = max(torque_load, float(v.get("engine_ext_torque_nm", 0.0))) # legacy fallback
# Dashboard-Metriken
v.register_metric("rpm", label="Drehzahl", unit="RPM", source="engine", priority=20)
v.register_metric("coolant_temp", label="Kühlmitteltemp", unit="°C", fmt=".1f", source="engine", priority=40)
v.register_metric("oil_temp", label="Öltemp", unit="°C", fmt=".1f", source="engine", priority=41)
v.register_metric("oil_pressure", label="Öldruck", unit="bar", fmt=".2f", source="engine", priority=42)
v.register_metric("engine_available_torque_nm", label="Verfügbares Motormoment", unit="Nm", fmt=".0f", source="engine", priority=43)
v.register_metric("engine_net_torque_nm", label="Netto Motormoment", unit="Nm", fmt=".0f", source="engine", priority=44)
v.register_metric("throttle_pedal_pct", label="Gaspedal", unit="%", fmt=".0f", source="engine", priority=45)
v.register_metric("throttle_plate_pct", label="Drosselklappe", unit="%", fmt=".0f", source="engine", priority=46)
v.register_metric("rpm", unit="RPM", fmt=".1f", label="Drehzahl", source="engine", priority=20)
v.register_metric("oil_pressure", unit="bar", fmt=".2f", label="Öldruck", source="engine", priority=42)
v.register_metric("engine_available_torque_nm", unit="Nm", fmt=".0f", label="Verfügbares Motormoment", source="engine", priority=43)
v.register_metric("engine_torque_load_nm", unit="Nm", fmt=".0f", label="Lastmoment ges.", source="engine", priority=44)
v.register_metric("engine_net_torque_nm", unit="Nm", fmt=".0f", label="Netto Motormoment", source="engine", priority=45)
v.register_metric("throttle_pedal_pct", unit="%", fmt=".0f", label="Gaspedal", source="engine", priority=46)
v.register_metric("throttle_plate_pct", unit="%", fmt=".0f", label="Drosselklappe", source="engine", priority=47)
# Hilfsfunktionen
def visco(temp_c: float) -> float:
# -10°C -> 0.6, 20°C -> 0.8, 90°C -> 1.0 (linear segmentiert)
if temp_c <= -10: return 0.6
if temp_c >= 90: return 1.0
if temp_c <= 20:
# -10..20°C: 0.6 -> 0.8 (30 K Schritt → +0.2 => +0.006666.. pro K)
return 0.6 + (temp_c + 10.0) * (0.2 / 30.0)
# 20..90°C: 0.8 -> 1.0 (70 K Schritt → +0.2)
return 0.8 + (temp_c - 20.0) * (0.2 / 70.0)
# Spannungsfaktor: unter vmin kein Crank, bei 12.6V ~1.0
# --- Start-/Ziel-RPM Logik ---
# Starter-Viskositätseinfluss
vfac = 0.0 if elx_v <= starter_vmin else min(1.2, (elx_v - starter_vmin) / max(0.3, (12.6 - starter_vmin)))
crank_rpm = starter_nom * vfac * visco(oil)
crank_rpm = starter_nom * vfac * self._visco(oil)
# sinnvolle effektive Startschwelle (unabhängig von stall)
start_rpm_min = 0.15 * idle # 15 % vom Idle
start_rpm_max = 0.45 * idle # 45 % vom Idle
# effektive Startschwelle (15..45% Idle)
start_rpm_min = 0.15 * idle
start_rpm_max = 0.45 * idle
start_rpm_th_eff = max(start_rpm_min, min(start_rpm_th, start_rpm_max))
# --- Ziel-RPM bestimmen ---
if ign in ("OFF", "ACC"):
self._running = False
target_rpm = 0.0
elif ign == "START":
target_rpm = crank_rpm # wie gehabt
# Greifen, sobald Schwelle erreicht und Spannung reicht
target_rpm = crank_rpm
if not self._running and target_rpm >= start_rpm_th_eff and elx_v > starter_vmin:
self._running = True
else: # ON
# Catch-on-ON: wenn beim Umschalten noch genug Drehzahl anliegt
if not self._running and rpm >= max(0.15*idle, start_rpm_th_eff*0.9):
self._running = True
if self._running:
cold_add = max(0.0, min(cold_gain_max, (90.0 - cool) * cold_gain_per_deg))
cold_add = max(0.0, min(ENGINE_DEFAULTS["idle_cold_gain_max"],
(90.0 - cool) * cold_gain_per_deg))
idle_eff = idle + cold_add
target_rpm = max(idle_eff, min(maxr, rpm))
else:
target_rpm = 0.0
# --- verfügbare Motorleistung / Moment (ohne Last) ---
# --- Basis-Moment & Derating ---
base_torque = self._torque_at_rpm(power_kw, max(1.0, rpm), peak_torque_rpm)
temp_derate = max(0.7, 1.0 - max(0.0, (oil - 110.0)) * 0.005)
# Drive-by-Wire / PI auf Drehmomentanteil -----------------------------------
# Fahrerwunsch in "Leistungsanteil" (0..1) transformieren (Kennlinie)
demand = self._curve(pedal/100.0, thr_curve) # 0..1
# Overrun-Logik: bei sehr geringem Wunsch → nahezu zu (aber nie ganz)
# --- DBW (PI auf Torque-Anteil) ---
demand = self._curve(pedal/100.0, thr_curve)
plate_target_min = plate_overrun if demand < 0.02 else plate_idle_min
# Regler-Soll: gewünschter Torque-Anteil relativ zum maximal möglichen bei aktueller Drehzahl
# Wir approximieren: torque_avail = base_torque * airflow * temp_derate
airflow = self._plate_airflow_factor(self._plate_pct)
torque_avail = base_torque * airflow * temp_derate
torque_frac = 0.0 if base_torque <= 1e-6 else (torque_avail / (base_torque * temp_derate)) # ~airflow
torque_frac = 0.0 if base_torque <= 1e-6 else (torque_avail / (base_torque * temp_derate))
err = max(0.0, demand) - max(0.0, min(1.0, torque_frac))
# PI: Integrator nur wenn Motor an
if ign == "ON" and self._running:
self._tc_i += err * torque_ki * dt
else:
self._tc_i *= 0.95 # langsam abbauen
self._tc_i *= 0.95
plate_cmd = self._plate_pct + (torque_kp * err + self._tc_i) * 100.0 # in %-Punkte
plate_cmd = self._plate_pct + (torque_kp * err + self._tc_i) * 100.0
plate_cmd = max(plate_target_min, min(100.0, plate_cmd))
a_tau = min(1.0, dt / max(1e-3, plate_tau))
self._plate_pct = (1.0 - a_tau) * self._plate_pct + a_tau * plate_cmd
# Aktuator-Trägheit (1. Ordnung)
if plate_tau <= 1e-3:
self._plate_pct = plate_cmd
else:
a = min(1.0, dt / plate_tau)
self._plate_pct = (1.0 - a) * self._plate_pct + a * plate_cmd
# Update airflow nach Stellgröße
# aktualisiertes Moment
airflow = self._plate_airflow_factor(self._plate_pct)
avail_torque = base_torque * airflow * temp_derate
net_torque = max(0.0, avail_torque - max(0.0, ext_torque))
net_torque = max(0.0, avail_torque - max(0.0, torque_load))
# --- Ziel-RPM aus Netto-Moment (sehr simple Dynamik) -----------------------
# Näherung: mehr Netto-Moment → RPM-Ziel steigt innerhalb der Bandbreite
# Wir skalieren zwischen (idle_eff) und maxr
# --- Wärmeleistung pushen (W) ---
# mechanische Leistung:
mech_power_w = net_torque * (2.0 * math.pi * rpm / 60.0)
# grober Wirkungsgrad (0.24..0.34 je nach Pedal/Kennlinie)
eta = 0.24 + 0.10 * self._curve(pedal/100.0, thr_curve)
eta = max(0.05, min(0.45, eta))
fuel_power_w = mech_power_w / max(1e-3, eta)
heat_w = max(0.0, fuel_power_w - mech_power_w)
# Idle-Basiswärme, damit im Leerlauf nicht auskühlt:
idle_heat_w = 1500.0 * (rpm / max(1.0, idle))
heat_w = max(heat_w, idle_heat_w)
v.push("thermal.heat_w", +heat_w, source="engine")
# --- Ziel-RPM aus Netto-Moment ---
if ign == "ON" and self._running:
cold_add = max(0.0, min(cold_gain_max, (90.0 - cool) * cold_gain_per_deg))
cold_add = max(0.0, min(ENGINE_DEFAULTS["idle_cold_gain_max"],
(90.0 - cool) * cold_gain_per_deg))
idle_eff = idle + cold_add
torque_norm = 0.0 if base_torque <= 1e-6 else max(0.0, min(1.0, net_torque / (base_torque * temp_derate + 1e-6)))
denom = (base_torque * temp_derate + 1e-6)
torque_norm = 0.0 if denom <= 1e-8 else max(0.0, min(1.0, net_torque / denom))
target_rpm = idle_eff + torque_norm * (maxr - idle_eff)
# --- RPM an Ziel annähern (mechanische Trägheit) --------------------------
if rpm < target_rpm:
rpm = min(target_rpm, rpm + rise * dt)
else:
rpm = max(target_rpm, rpm - fall * dt)
# Inertia
if rpm < target_rpm: rpm = min(target_rpm, rpm + rise * dt)
else: rpm = max(target_rpm, rpm - fall * dt)
# Stall: in ON, wenn laufend und RPM < stall ohne Starter → aus
# Stall
if ign == "ON" and self._running and rpm < stall_rpm:
self._running = False
# --- Temperaturen ----------------------------------------------------------
heat = (rpm/maxr)*0.8 + load*0.6
if (ign in ("ON","START")) and (self._running or target_rpm > 0):
cool += warm_c * heat * dt
oil += warm_o * heat * dt
else:
cool += (ambient - cool) * min(1.0, dt * cool_c)
oil += (ambient - oil) * min(1.0, dt * cool_o)
# --- Öldruck ---------------------------------------------------------------
if self._running and rpm > 0:
# --- Öldruck ---
if self._running and rpm > 0.0:
over_krpm = max(0.0, (rpm - idle)/1000.0)
oil_target = oil_idle_bar + oil_slope_bar_per_krpm * over_krpm
elif ign == "START" and target_rpm > 0:
elif ign == "START" and target_rpm > 0.0:
oil_target = max(oil_floor_off, 0.4)
else:
oil_target = oil_floor_off
a = min(1.0, dt / max(0.05, self._oil_p_tau))
oil_p = (1-a) * oil_p + a * oil_target
# --- Realistischer RPM-Jitter ---------------------------------------------
# bandbegrenztes Rauschen: x[n] = (1 - b)*x[n-1] + b*eta, b ~ dt/tau
# --- RPM-Jitter ---
if self._running and rpm >= jitter_off_rpm and ign == "ON":
b = min(1.0, dt / max(1e-3, jitter_tau))
eta = random.uniform(-1.0, 1.0) # weißes Rauschen
self._rpm_noise = (1.0 - b) * self._rpm_noise + b * eta
# Amplitude linear zwischen idle_amp und hi_amp
# bezogen auf aktuelles Drehzahlniveau (klein aber sichtbar)
amp_idle = jitter_idle_amp
amp_hi = jitter_hi_amp
# Interpolation über 0..maxr
eta_n = random.uniform(-1.0, 1.0)
self._rpm_noise = (1.0 - b) * self._rpm_noise + b * eta_n
k = max(0.0, min(1.0, rpm / max(1.0, maxr)))
amp = (1.0 - k)*amp_idle + k*amp_hi
amp = (1.0 - k)*jitter_idle_amp + k*jitter_hi_amp
rpm += self._rpm_noise * amp
else:
# Kein Jitter: Noise langsam abklingen
self._rpm_noise *= 0.9
# --- Klammern & Setzen -----------------------------------------------------
# --- Clamp & Set ---
rpm = max(0.0, min(rpm, maxr))
cool = max(-40.0, min(cool, 120.0))
oil = max(-40.0, min(oil, 150.0))
oil_p = max(oil_floor_off if not self._running else oil_floor_off, min(8.0, oil_p))
oil_p = max(oil_floor_off, min(8.0, oil_p))
v.set("rpm", int(rpm))
# WICHTIG: NICHT runden das macht das Dashboard per fmt
v.set("coolant_temp", float(cool))
v.set("oil_temp", float(oil))
v.set("rpm", float(rpm))
# Temperaturen NICHT setzen CoolingModule ist owner!
v.set("oil_pressure", float(oil_p))
v.set("engine_available_torque_nm", float(avail_torque))
v.set("engine_torque_load_nm", float(torque_load))
v.set("engine_net_torque_nm", float(net_torque))
v.set("throttle_pedal_pct", float(pedal))
v.set("throttle_plate_pct", float(self._plate_pct))

View File

@@ -1,39 +1,227 @@
# =============================
# app/simulation/modules/gearbox.py
# =============================
from __future__ import annotations
from app.simulation.simulator import Module, Vehicle
import math
GEARBOX_DEFAULTS = {
# Übersetzungen
"primary_ratio": 1.84, # Kurbelwelle -> Getriebeeingang
# Gangübersetzungen (Index 0 = Neutral/N = 0.0)
"gear_ratios": [0.0, 2.60, 1.90, 1.55, 1.35, 1.20, 1.07],
# Ketten-/Endübersetzung via Zähne
"front_sprocket_teeth": 16,
"rear_sprocket_teeth": 45,
# Rad/Reifen
"wheel_radius_m": 0.31, # dynamischer Halbmesser
"drivetrain_efficiency": 0.93, # Wirkungsgrad Kurbel -> Rad
"rpm_couple_gain": 0.20, # wie stark Engine-RPM zum Rad synchronisiert wird (0..1)
# Fahrzeug / Widerstände
"rolling_c": 0.015, # Rollwiderstandskoeff.
"air_density": 1.2, # kg/m^3
"aero_cd": 0.6,
"frontal_area_m2": 0.6,
# Kupplung (auto)
"clutch_max_torque_nm": 220.0, # max übertragbares Drehmoment (bei c=1)
"clutch_aggressiveness": 0.6, # 0..1 (0 = sehr sanft, 1 = sehr bissig)
"clutch_curve": "linear", # "linear" | "progressive" | "soft"
"clutch_drag_nm": 1.0, # Restschleppmoment bei getrennt
"shift_time_s": 0.15, # Schaltzeit, während der entkuppelt wird
"sync_rpm_band": 200.0, # RPM-Band, in dem als „synchron“ gilt
# Reifenhaftung (einfaches Limit)
"tire_mu_peak": 1.10, # statischer Reibkoeffizient (Peak)
"tire_mu_slide": 0.85, # Gleitreibung
"rear_static_weight_frac": 0.60 # statischer Lastanteil auf Antriebsrad
}
class GearboxModule(Module):
PRIO = 30
NAME = "gearbox"
"""Koppelt Engine-RPM ↔ Wheel-Speed; registriert speed_kmh/gear fürs Dashboard."""
def __init__(self):
self.speed_tau = 0.3
self.rpm_couple = 0.2
# interner Zustand
self._clutch = 0.0 # 0..1
self._shift_t = 0.0
self._target_gear = None
self._wheel_v = 0.0 # m/s
def apply(self, v: Vehicle, dt: float) -> None:
# Dashboard registration
# --- Dashboard-Registrierungen ---
v.register_metric("speed_kmh", label="Geschwindigkeit", unit="km/h", fmt=".1f", source="gearbox", priority=30)
v.register_metric("gear", label="Gang", source="gearbox", priority=25)
v.register_metric("gear", label="Gang", fmt="", source="gearbox", priority=25)
v.register_metric("clutch_pct", label="Kupplung", unit="%", fmt=".0f", source="gearbox", priority=26)
v.register_metric("wheel_slip_pct", label="Reifenschlupf", unit="%", fmt=".0f", source="gearbox", priority=27)
g = int(v.ensure("gear", 0))
rpm = float(v.ensure("rpm", 1200))
speed = float(v.ensure("speed_kmh", 0.0))
ratios = v.config.get("gearbox", {}).get("kmh_per_krpm", [0.0])
# --- Config / Inputs ---
gb = dict(GEARBOX_DEFAULTS)
gb.update(v.config.get("gearbox", {}))
if g <= 0 or g >= len(ratios):
speed = max(0.0, speed - 6.0*dt)
v.set("speed_kmh", speed)
return
primary = float(gb["primary_ratio"])
gear_ratios = list(gb["gear_ratios"])
z_f = int(gb["front_sprocket_teeth"])
z_r = int(gb["rear_sprocket_teeth"])
final = (z_r / max(1, z_f))
kmh_per_krpm = float(ratios[g])
target_speed = (rpm/1000.0) * kmh_per_krpm
alpha = min(1.0, dt / max(0.05, self.speed_tau))
speed = (1-alpha) * speed + alpha * target_speed
v.set("speed_kmh", speed)
r_w = float(gb["wheel_radius_m"])
eta = float(gb["drivetrain_efficiency"])
couple_gain = float(gb["rpm_couple_gain"])
wheel_rpm = (speed / max(0.1, kmh_per_krpm)) * 1000.0
rpm = (1-self.rpm_couple) * rpm + self.rpm_couple * wheel_rpm
v.set("rpm", int(rpm))
c_rr = float(gb["rolling_c"])
rho = float(gb["air_density"])
cd = float(gb["aero_cd"])
A = float(gb["frontal_area_m2"])
clutch_Tmax = float(gb["clutch_max_torque_nm"])
clutch_agr = min(1.0, max(0.0, float(gb["clutch_aggressiveness"])))
clutch_curve= str(gb["clutch_curve"]).lower()
clutch_drag = float(gb["clutch_drag_nm"])
shift_time = float(gb["shift_time_s"])
sync_band = float(gb["sync_rpm_band"])
mu_peak = float(gb["tire_mu_peak"])
mu_slide= float(gb["tire_mu_slide"])
rear_w = float(gb["rear_static_weight_frac"])
m = float(v.config.get("vehicle", {}).get("mass_kg", 210.0))
g = 9.81
# State
gear = int(v.ensure("gear", 0))
ign = str(v.ensure("ignition", "OFF"))
rpm = float(v.ensure("rpm", 1200.0))
pedal= float(v.ensure("throttle_pedal_pct", 0.0))
pedal = max(0.0, min(100.0, pedal))
# verfügbare Motordaten
eng_avail_T = float(v.get("engine_available_torque_nm", 0.0)) # „kann liefern“
# Hinweis: die Engine zieht später v.acc_total("engine.torque_load_nm") ab.
# Pending Shift Commands (vom UI gesetzt und dann zurücksetzen)
up_req = bool(v.ensure("gear_shift_up", False))
down_req = bool(v.ensure("gear_shift_down", False))
to_N_req = bool(v.ensure("gear_set_neutral", False))
if up_req: v.set("gear_shift_up", False)
if down_req: v.set("gear_shift_down", False)
if to_N_req: v.set("gear_set_neutral", False)
# --- Schaltlogik ---
if self._shift_t > 0.0:
self._shift_t -= dt
# währenddessen Kupplung öffnen
self._clutch = max(0.0, self._clutch - self._rate_from_agr(1.0, clutch_agr) * dt)
if self._shift_t <= 0.0 and self._target_gear is not None:
gear = int(self._target_gear)
v.set("gear", gear)
self._target_gear = None
else:
# neue Requests annehmen, wenn nicht bereits am Limit
if to_N_req:
self._target_gear = 0
self._shift_t = shift_time
elif up_req and gear < min(6, len(gear_ratios)-1):
self._target_gear = gear + 1
self._shift_t = shift_time
elif down_req and gear > 0:
self._target_gear = gear - 1
self._shift_t = shift_time
# --- Gesamtübersetzung und Soll-Drehzahlbezug ---
gear_ratio = float(gear_ratios[gear]) if 0 <= gear < len(gear_ratios) else 0.0
overall = primary * gear_ratio * final # Kurbel -> Rad
wheel_omega = self._wheel_v / max(1e-6, r_w) # rad/s
eng_omega_from_wheel = wheel_omega * overall
rpm_from_wheel = eng_omega_from_wheel * 60.0 / (2.0 * math.pi)
# --- Kupplungs-Automat ---
# Zielschließung aus Schlupf und Fahrerwunsch
slip_rpm = abs(rpm - rpm_from_wheel)
slip_norm = min(1.0, slip_rpm / max(1.0, sync_band))
base_target = max(0.0, min(1.0, (pedal/100.0)*0.6 + (1.0 - slip_norm)*0.6))
target_c = self._shape(base_target, clutch_curve)
# Bei N oder ohne Übersetzung kein Kraftschluss
if gear == 0 or overall <= 1e-6 or ign in ("OFF","ACC"):
target_c = 0.0
# Sanfte Anti-Abwürg-Logik: ist RPM sehr niedrig und Radlast hoch -> etwas öffnen
if rpm < 1500.0 and slip_rpm > 200.0:
target_c = min(target_c, 0.6)
# Dynamik der Kupplung (Annäherung Richtung target_c)
rate = self._rate_from_agr(target_c, clutch_agr) # s^-1
self._clutch += (target_c - self._clutch) * min(1.0, rate * dt)
self._clutch = max(0.0, min(1.0, self._clutch))
# --- Übertragbares Motormoment durch Kupplung ---
clutch_cap = clutch_Tmax * self._clutch
T_engine_to_input = max(0.0, min(eng_avail_T, clutch_cap))
# --- Rad-Seite: aus Motor via Übersetzung ---
T_wheel_from_engine = T_engine_to_input * overall * eta if overall > 0.0 else 0.0 # Nm am Rad
# --- Reibungs-/Luftwiderstand ---
v_ms = max(0.0, self._wheel_v)
F_roll = m * g * c_rr
F_aero = 0.5 * rho * cd * A * v_ms * v_ms
F_res = F_roll + F_aero
# --- Reifen-Force-Limit & Schlupf ---
N_rear = m * g * rear_w
F_trac_cap = mu_peak * N_rear
F_from_engine = T_wheel_from_engine / max(1e-6, r_w)
slip = 0.0
F_trac = F_from_engine
if abs(F_from_engine) > F_trac_cap:
slip = min(1.0, (abs(F_from_engine) - F_trac_cap) / max(1.0, F_from_engine))
# im Schlupf auf Slide-Niveau kappen
F_trac = math.copysign(mu_slide * N_rear, F_from_engine)
# --- Fahrzeugdynamik: a = (F_trac - F_res)/m ---
a = (F_trac - F_res) / max(1.0, m)
self._wheel_v = max(0.0, self._wheel_v + a * dt)
speed_kmh = self._wheel_v * 3.6
v.set("speed_kmh", float(speed_kmh))
v.set("gear", int(gear))
v.set("clutch_pct", float(self._clutch * 100.0))
v.set("wheel_slip_pct", float(max(0.0, min(1.0, slip)) * 100.0))
# --- Reaktionsmoment zurück an den Motor (Last) ---
# aus tatsächlich wirkender Traktionskraft (nach Grip-Limit)
T_engine_load = 0.0
if overall > 0.0 and self._clutch > 0.0:
T_engine_load = (abs(F_trac) * r_w) / max(1e-6, (overall * eta))
# kleiner Schlepp bei getrennt
if self._clutch < 0.1:
T_engine_load += clutch_drag * (1.0 - self._clutch)
if T_engine_load > 0.0:
v.push("engine.torque_load_nm", +T_engine_load, source="driveline")
# --- RPM-Kopplung (sanfte Synchronisierung) ---
if overall > 0.0 and self._clutch > 0.2 and ign in ("ON","START"):
alpha = min(1.0, couple_gain * self._clutch * dt / max(1e-3, 0.1))
rpm = (1.0 - alpha) * rpm + alpha * rpm_from_wheel
v.set("rpm", float(rpm))
# ----- Helpers -----
def _rate_from_agr(self, target_c: float, agr: float) -> float:
"""Engage/Release-Geschwindigkeit [1/s] in Abhängigkeit der Aggressivität."""
# 0.05s (bissig) bis 0.5s (sanft) für ~63%-Annäherung
tau = 0.5 - 0.45 * agr
if target_c < 0.1: # Öffnen etwas flotter
tau *= 0.7
return 1.0 / max(0.05, tau)
def _shape(self, x: float, curve: str) -> float:
x = max(0.0, min(1.0, x))
if curve == "progressive":
return x * x
if curve == "soft":
return math.sqrt(x)
return x # linear

View File

@@ -1,7 +1,7 @@
# app/simulation/simulator.py
from __future__ import annotations
from dataclasses import dataclass, field
from typing import Dict, Any, List, Optional, Tuple, Type
from typing import Dict, Any, List, Optional
import importlib, pkgutil, inspect, pathlib
# ---------------------- Core: Vehicle + Accumulator-API ----------------------
@@ -11,17 +11,11 @@ class Vehicle:
"""
State-/Config-Container + Dashboard-Registry + generische Frame-Akkumulatoren.
Grundprinzip:
- set(key, value): harter Setzer (eine Quelle „besitzt“ den Wert)
- get/ensure: lesen/initialisieren
- push(key, delta, source): additiv beitragen (Source/Sink über Vorzeichen)
- acc_total(key): Summe aller Beiträge in diesem Frame
- set/get/ensure: harte Zustandswerte
- push(key, delta, source): additiver Beitrag pro Frame (Source/Sink via Vorzeichen)
- acc_total(key): Summe aller Beiträge zu 'key'
- acc_breakdown(key): Beiträge je Quelle (Debug/Transparenz)
- acc_reset(): zu Framebeginn alle Akkus löschen
Konvention (Empfehlung, aber nicht erzwungen):
* Positive Beiträge „belasten“ (z. B. Widerstandsmoment, Laststrom)
* Negative Beiträge „speisen“ (z. B. Generator-Moment, Einspeisestrom)
- acc_reset(): am Frame-Beginn alle Akkus löschen
"""
state: Dict[str, Any] = field(default_factory=dict)
config: Dict[str, Any] = field(default_factory=dict)
@@ -29,7 +23,7 @@ class Vehicle:
dashboard_specs: Dict[str, Dict[str, Any]] = field(default_factory=dict)
# Accumulatoren: key -> {source_name: float}
# Accumulator: key -> {source_name: float}
_acc: Dict[str, Dict[str, float]] = field(default_factory=dict)
# ---- state helpers ----
@@ -73,80 +67,37 @@ class Vehicle:
def snapshot(self) -> Dict[str, Any]:
return dict(self.state)
# ---- generic accumulators (per-frame) ----
# ---- generic accumulators (per frame) ----
def acc_reset(self) -> None:
self._acc.clear()
def push(self, key: str, delta: float, source: Optional[str] = None) -> None:
"""
Additiver Beitrag zu einer Größe.
Vorzeichen: + belastet / - speist (Empfehlung).
"""
src = source or "anon"
bucket = self._acc.setdefault(key, {})
bucket[src] = bucket.get(src, 0.0) + float(delta)
def acc_total(self, key: str) -> float:
bucket = self._acc.get(key)
if not bucket: return 0.0
return sum(bucket.values())
return 0.0 if not bucket else sum(bucket.values())
def acc_breakdown(self, key: str) -> Dict[str, float]:
return dict(self._acc.get(key, {}))
# ---- Backwards-compat convenience for your current Basic code ----
def elec_reset_frame(self) -> None:
# map legacy helpers auf generisches System
# loads + sources werden in einem Kanal gesammelt
# (loads positiv, sources negativ)
# Diese Methode ist mittlerweile redundant, acc_reset() macht alles.
pass
def elec_add_load(self, name: str, amps: float) -> None:
self.push("elec.current", +max(0.0, float(amps)), source=name)
def elec_add_source(self, name: str, amps: float) -> None:
self.push("elec.current", -max(0.0, float(amps)), source=name)
def elec_totals(self) -> Tuple[float, float]:
"""
Gibt (loads_a_positiv, sources_a_positiv) zurück.
Intern liegt alles algebraisch in 'elec.current'.
"""
bd = self.acc_breakdown("elec.current")
loads = sum(v for v in bd.values() if v > 0)
sources = sum(-v for v in bd.values() if v < 0)
return (loads, sources)
# ---------------------------- Module Base + Loader ----------------------------
class Module:
"""
Basisklasse für alle Module. Jedes Modul:
- deklariert PRIO (klein = früher)
- hat NAME (für Debug/Registry)
- implementiert apply(v, dt)
"""
PRIO: int = 100
NAME: str = "module"
def apply(self, v: Vehicle, dt: float) -> None:
raise NotImplementedError
def _discover_modules(pkg_name: str = "app.simulation.modules") -> List[Module]:
"""
Sucht in app/simulation/modules nach Klassen, die Module erben,
instanziert sie und sortiert nach PRIO.
"""
mods: List[Module] = []
try:
pkg = importlib.import_module(pkg_name)
except Exception as exc:
raise RuntimeError(f"Module package '{pkg_name}' konnte nicht geladen werden: {exc}")
pkg_path = pathlib.Path(pkg.__file__).parent
for _, modname, ispkg in pkgutil.iter_modules([str(pkg_path)]):
if ispkg: # optional: auch Subpackages zulassen
if ispkg:
continue
full_name = f"{pkg_name}.{modname}"
try:
@@ -154,60 +105,79 @@ def _discover_modules(pkg_name: str = "app.simulation.modules") -> List[Module]:
except Exception as exc:
print(f"[loader] Fehler beim Import {full_name}: {exc}")
continue
for _, obj in inspect.getmembers(m, inspect.isclass):
if not issubclass(obj, Module):
continue
if obj is Module:
if obj is Module or not issubclass(obj, Module):
continue
try:
inst = obj() # Module ohne args
inst = obj()
except Exception as exc:
print(f"[loader] Kann {obj.__name__} nicht instanziieren: {exc}")
continue
mods.append(inst)
# sortieren nach PRIO; bei Gleichstand NAME als Tie-Break
mods.sort(key=lambda x: (getattr(x, "PRIO", 100), getattr(x, "NAME", x.__class__.__name__)))
return mods
# ------------------------------- Simulator API --------------------------------
class VehicleSimulator:
"""
Öffentliche Fassade für GUI/Tests.
Lädt Module dynamisch, führt sie pro Tick in PRIO-Reihenfolge aus.
"""
"""Lädt Module dynamisch, führt sie pro Tick in PRIO-Reihenfolge aus."""
def __init__(self, modules_package: str = "app.simulation.modules"):
self.v = Vehicle()
self.modules: List[Module] = _discover_modules(modules_package)
self.module_defaults: Dict[str, Dict[str, Any]] = {}
for m in self.modules:
ns = getattr(m, "NAME", "").lower() or m.__class__.__name__.lower()
mod = importlib.import_module(m.__class__.__module__)
# Konvention: UPPER(NAME) + _DEFAULTS
key = f"{ns.upper()}_DEFAULTS"
defaults = getattr(mod, key, None)
if isinstance(defaults, dict):
self.module_defaults[ns] = dict(defaults)
def update(self, dt: float) -> None:
# pro Frame alle Akkumulatoren leeren
self.v.acc_reset()
self.v.acc_reset() # pro Frame Akkus leeren
for m in self.modules:
try:
m.apply(self.v, dt)
except Exception as exc:
print(f"[sim] Modul {getattr(m, 'NAME', m.__class__.__name__)} Fehler: {exc}")
# Kompatible Hilfsfunktionen für GUI
def snapshot(self) -> Dict[str, Any]:
return self.v.snapshot()
def load_config(self, cfg: Dict[str, Any]) -> None:
# Namespaced-Merge; Keys bleiben modul-spezifisch
for k, sub in cfg.items():
self.v.config.setdefault(k, {}).update(sub if isinstance(sub, dict) else {})
if "dtc" in cfg:
self.v.dtc.update(cfg["dtc"])
def export_config(self) -> Dict[str, Any]:
return {ns: dict(data) for ns, data in self.v.config.items()} | {"dtc": dict(self.v.dtc)}
"""
Exportiert einen *vollständigen* Snapshot:
- Modul-Defaults + Overrides (so fehlen keine Keys)
- alle übrigen Namespaces unverändert
- DTC separat
"""
out: Dict[str, Any] = {}
# für alte GUI-Knöpfe
# 1) Modul-Namespaces: Defaults + Overrides mergen
for ns, defs in self.module_defaults.items():
merged = dict(defs)
merged.update(self.v.config.get(ns, {}))
out[ns] = merged
# 2) übrige Namespaces (ohne bekannte Modul-Defaults) 1:1 übernehmen
for ns, data in self.v.config.items():
if ns not in out:
out[ns] = dict(data)
# 3) DTC anhängen
out["dtc"] = dict(self.v.dtc)
return out
# Falls noch benutzt:
def set_gear(self, g: int) -> None:
self.v.set("gear", max(0, min(10, int(g))))
def set_throttle(self, t: int) -> None:
self.v.set("throttle_pct", max(0, min(100, int(t)))) # falls noch genutzt
self.v.set("throttle_pct", max(0, min(100, int(t))))

View File

@@ -12,188 +12,198 @@ class BasicTab(UITab):
NAME = "basic"
TITLE = "Basisdaten"
PRIO = 10
"""Basis-Fahrzeug-Tab (Zündung & Elektrik)."""
def __init__(self, parent, sim):
self.sim = sim
self.frame = ttk.Frame(parent, padding=8)
self.frame.columnconfigure(1, weight=1)
for c in (0,1,2,3): self.frame.columnconfigure(c, weight=1)
row = 0
# Vehicle basics -----------------------------------------------------------
ttk.Label(self.frame, text="Fahrzeugtyp").grid(row=row, column=0, sticky="w"); row+=1
self.type_var = tk.StringVar(value=self.sim.v.config.get("vehicle", {}).get("type", "motorcycle"))
ttk.Combobox(self.frame, textvariable=self.type_var, state="readonly",
values=["motorcycle", "car", "truck"], width=16)\
.grid(row=row-1, column=1, sticky="w")
ttk.Label(self.frame, text="Gewicht [kg]").grid(row=row, column=0, sticky="w"); row+=1
self.mass_var = tk.DoubleVar(value=float(self.sim.v.config.get("vehicle", {}).get("mass_kg", 210.0)))
ttk.Entry(self.frame, textvariable=self.mass_var, width=10).grid(row=row-1, column=1, sticky="w")
self.abs_var = tk.BooleanVar(value=bool(self.sim.v.config.get("vehicle", {}).get("abs", True)))
ttk.Checkbutton(self.frame, text="ABS vorhanden", variable=self.abs_var)\
.grid(row=row, column=0, columnspan=2, sticky="w"); row+=1
self.tcs_var = tk.BooleanVar(value=bool(self.sim.v.config.get("vehicle", {}).get("tcs", False)))
ttk.Checkbutton(self.frame, text="ASR/Traktionskontrolle", variable=self.tcs_var)\
.grid(row=row, column=0, columnspan=2, sticky="w"); row+=1
ttk.Separator(self.frame).grid(row=row, column=0, columnspan=2, sticky="ew", pady=(6,6)); row+=1
# Ambient -----------------------------------------------------------------
ttk.Label(self.frame, text="Umgebung [°C]").grid(row=row, column=0, sticky="w"); row+=1
self.ambient_var = tk.DoubleVar(value=float(self.sim.snapshot().get("ambient_c", 20.0)))
ttk.Entry(self.frame, textvariable=self.ambient_var, width=10)\
.grid(row=row-1, column=1, sticky="w")
# Ignition ----------------------------------------------------------------
ttk.Label(self.frame, text="Zündung").grid(row=row, column=0, sticky="w"); row+=1
self.ign_var = tk.StringVar(value=str(self.sim.snapshot().get("ignition", "ON")))
ign_frame = ttk.Frame(self.frame); ign_frame.grid(row=row-1, column=1, sticky="w")
for i, state in enumerate(["OFF", "ACC", "ON", "START"]):
ttk.Radiobutton(ign_frame, text=state, value=state,
variable=self.ign_var, command=self._apply_ign)\
# ---------- Linke Spalte ----------
rowL = 0
def L(lbl, var=None, w=12, kind="entry", values=None):
nonlocal rowL
ttk.Label(self.frame, text=lbl).grid(row=rowL, column=0, sticky="w")
if kind == "entry":
ttk.Entry(self.frame, textvariable=var, width=w).grid(row=rowL, column=1, sticky="w")
elif kind == "label":
ttk.Label(self.frame, textvariable=var).grid(row=rowL, column=1, sticky="w")
elif kind == "combo":
ttk.Combobox(self.frame, textvariable=var, state="readonly", values=values or [], width=w)\
.grid(row=rowL, column=1, sticky="w")
elif kind == "check":
ttk.Checkbutton(self.frame, variable=var).grid(row=rowL, column=1, sticky="w")
elif kind == "radio":
f = ttk.Frame(self.frame); f.grid(row=rowL, column=1, sticky="w")
for i,(t,vv) in enumerate(values or []):
ttk.Radiobutton(f, text=t, value=vv, variable=var, command=self._apply_ign)\
.grid(row=0, column=i, padx=(0,6))
rowL += 1
# Live Electrical ----------------------------------------------------------
ttk.Label(self.frame, text="Batterie [V]").grid(row=row, column=0, sticky="w"); row+=1
self.batt_v_var = tk.StringVar(value=f"{self.sim.snapshot().get('battery_voltage', 12.6):.2f}")
ttk.Label(self.frame, textvariable=self.batt_v_var).grid(row=row-1, column=1, sticky="w")
# Vehicle
self.type = tk.StringVar(); L("Fahrzeugtyp", self.type, kind="combo", values=["motorcycle","car","truck"])
self.mass = tk.DoubleVar(); L("Gewicht [kg]", self.mass)
self.abs = tk.BooleanVar(); L("ABS vorhanden", self.abs, kind="check")
self.tcs = tk.BooleanVar(); L("ASR/Traktionskontrolle", self.tcs, kind="check")
ttk.Label(self.frame, text="ELX/Bus [V]").grid(row=row, column=0, sticky="w"); row+=1
self.elx_v_var = tk.StringVar(value=f"{self.sim.snapshot().get('elx_voltage', 0.0):.2f}")
ttk.Label(self.frame, textvariable=self.elx_v_var).grid(row=row-1, column=1, sticky="w")
ttk.Separator(self.frame).grid(row=rowL, column=0, columnspan=2, sticky="ew", pady=(8,6)); rowL += 1
ttk.Label(self.frame, text="SOC [0..1]").grid(row=row, column=0, sticky="w"); row+=1
self.soc_var = tk.StringVar(value=f"{self.sim.snapshot().get('battery_soc', 0.8):.2f}")
ttk.Label(self.frame, textvariable=self.soc_var).grid(row=row-1, column=1, sticky="w")
# Environment / Ignition
self.amb = tk.DoubleVar(); L("Umgebung [°C]", self.amb)
self.ign = tk.StringVar(); L("Zündung", self.ign, kind="radio",
values=[("OFF","OFF"),("ACC","ACC"),("ON","ON"),("START","START")])
ttk.Label(self.frame, text="I Batterie [A] (+entlädt)").grid(row=row, column=0, sticky="w"); row+=1
self.ibatt_var = tk.StringVar(value=f"{self.sim.snapshot().get('battery_current_a', 0.0):.2f}")
ttk.Label(self.frame, textvariable=self.ibatt_var).grid(row=row-1, column=1, sticky="w")
ttk.Separator(self.frame).grid(row=rowL, column=0, columnspan=2, sticky="ew", pady=(8,6)); rowL += 1
ttk.Label(self.frame, text="I Lima [A]").grid(row=row, column=0, sticky="w"); row+=1
self.ialt_var = tk.StringVar(value=f"{self.sim.snapshot().get('alternator_current_a', 0.0):.2f}")
ttk.Label(self.frame, textvariable=self.ialt_var).grid(row=row-1, column=1, sticky="w")
# Live links (Labels)
self.batt_v = tk.StringVar(); L("Batterie [V]", self.batt_v, kind="label")
self.elx_v = tk.StringVar(); L("ELX/Bus [V]", self.elx_v, kind="label")
self.soc = tk.StringVar(); L("SOC [0..1]", self.soc, kind="label")
ttk.Label(self.frame, text="Last gesamt [A]").grid(row=row, column=0, sticky="w"); row+=1
self.load_var = tk.StringVar(value=f"{self.sim.snapshot().get('elec_load_total_a', 0.0):.2f}")
ttk.Label(self.frame, textvariable=self.load_var).grid(row=row-1, column=1, sticky="w")
# ---------- Rechte Spalte ----------
rowR = 0
def R(lbl, var=None, w=12, kind="entry"):
nonlocal rowR
ttk.Label(self.frame, text=lbl).grid(row=rowR, column=2, sticky="w")
if kind == "entry":
ttk.Entry(self.frame, textvariable=var, width=w).grid(row=rowR, column=3, sticky="w")
elif kind == "label":
ttk.Label(self.frame, textvariable=var).grid(row=rowR, column=3, sticky="w")
rowR += 1
ttk.Separator(self.frame).grid(row=row, column=0, columnspan=2, sticky="ew", pady=(6,6)); row+=1
# Live rechts (Labels)
self.ibatt = tk.StringVar(); R("I Batterie [A] (+entlädt)", self.ibatt, kind="label")
self.ialt = tk.StringVar(); R("I Lima [A]", self.ialt, kind="label")
self.load_elx= tk.StringVar(); R("Last ELX [A]", self.load_elx, kind="label")
self.load_bat= tk.StringVar(); R("Last Batterie [A]", self.load_bat, kind="label")
self.load_tot= tk.StringVar(); R("Last gesamt [A]", self.load_tot, kind="label")
# Electrical config --------------------------------------------------------
econf = self.sim.v.config.get("electrical", {})
ttk.Label(self.frame, text="Batt Kap. [Ah]").grid(row=row, column=0, sticky="w"); row+=1
self.bcap = tk.DoubleVar(value=float(econf.get("battery_capacity_ah", 8.0)))
ttk.Entry(self.frame, textvariable=self.bcap, width=10).grid(row=row-1, column=1, sticky="w")
ttk.Separator(self.frame).grid(row=rowR, column=2, columnspan=2, sticky="ew", pady=(8,6)); rowR += 1
ttk.Label(self.frame, text="Batt R_int [Ω]").grid(row=row, column=0, sticky="w"); row+=1
self.brint = tk.DoubleVar(value=float(econf.get("battery_r_int_ohm", 0.020)))
ttk.Entry(self.frame, textvariable=self.brint, width=10).grid(row=row-1, column=1, sticky="w")
# Electrical config
self.bcap = tk.DoubleVar(); R("Batt Kap. [Ah]", self.bcap)
self.brint = tk.DoubleVar(); R("Batt R_int [Ω]", self.brint)
self.alt_v = tk.DoubleVar(); R("Reglerspannung [V]", self.alt_v)
self.alt_a = tk.DoubleVar(); R("Lima Nennstrom [A]", self.alt_a)
self.alt_ci = tk.IntVar(); R("Cut-In RPM", self.alt_ci)
self.alt_fc = tk.IntVar(); R("Full-Cap RPM", self.alt_fc)
self.alt_eta= tk.DoubleVar(); R("Lima η_mech [-]", self.alt_eta)
self.alt_rat= tk.DoubleVar(); R("Lima Übersetzung [-]", self.alt_rat)
self.alt_d0 = tk.DoubleVar(); R("Lima Drag Grund [Nm]", self.alt_d0)
self.alt_d1 = tk.DoubleVar(); R("Lima Drag /krpm [Nm]", self.alt_d1)
ttk.Label(self.frame, text="Reglerspannung [V]").grid(row=row, column=0, sticky="w"); row+=1
self.alt_v = tk.DoubleVar(value=float(econf.get("alternator_reg_v", 14.2)))
ttk.Entry(self.frame, textvariable=self.alt_v, width=10).grid(row=row-1, column=1, sticky="w")
# ---------- Buttons ----------
rowBtns = max(rowL, rowR) + 1
btnrow = ttk.Frame(self.frame); btnrow.grid(row=rowBtns, column=0, columnspan=4, sticky="w", pady=(8,0))
ttk.Button(btnrow, text="Aktualisieren", command=self.refresh).pack(side="left")
ttk.Button(btnrow, text="Anwenden", command=self.apply).pack(side="left", padx=(8,0))
ttk.Label(self.frame, text="Lima Nennstrom [A]").grid(row=row, column=0, sticky="w"); row+=1
self.alt_a = tk.DoubleVar(value=float(econf.get("alternator_rated_a", 20.0)))
ttk.Entry(self.frame, textvariable=self.alt_a, width=10).grid(row=row-1, column=1, sticky="w")
self.refresh()
ttk.Label(self.frame, text="Cut-In RPM").grid(row=row, column=0, sticky="w"); row+=1
self.alt_cutin = tk.IntVar(value=int(econf.get("alt_cut_in_rpm", 1500)))
ttk.Entry(self.frame, textvariable=self.alt_cutin, width=10).grid(row=row-1, column=1, sticky="w")
ttk.Label(self.frame, text="Full-Cap RPM").grid(row=row, column=0, sticky="w"); row+=1
self.alt_full = tk.IntVar(value=int(econf.get("alt_full_rpm", 4000)))
ttk.Entry(self.frame, textvariable=self.alt_full, width=10).grid(row=row-1, column=1, sticky="w")
# Apply --------------------------------------------------------------------
ttk.Button(self.frame, text="Anwenden", command=self.apply)\
.grid(row=row, column=0, pady=(8,0), sticky="w")
# periodic UI refresh
self._tick()
def _tick(self):
# ------------ Logic ------------
def refresh(self):
snap = self.sim.snapshot()
# Live-Werte
self.batt_v_var.set(f"{snap.get('battery_voltage', 0):.2f}")
self.elx_v_var.set(f"{snap.get('elx_voltage', 0):.2f}")
self.soc_var.set(f"{snap.get('battery_soc', 0.0):.2f}")
self.ibatt_var.set(f"{snap.get('battery_current_a', 0.0):.2f}")
self.ialt_var.set(f"{snap.get('alternator_current_a', 0.0):.2f}")
self.load_var.set(f"{snap.get('elec_load_total_a', 0.0):.2f}")
vcfg = dict(self.sim.v.config.get("vehicle", {}))
ecfg = dict(self.sim.v.config.get("electrical", {}))
# START→ON aus dem Modul spiegeln
curr_ign = snap.get("ignition")
if curr_ign and curr_ign != self.ign_var.get():
self.ign_var.set(curr_ign)
# Vehicle
self.type.set(vcfg.get("type", "motorcycle"))
self.mass.set(float(vcfg.get("mass_kg", 210.0)))
self.abs.set(bool(vcfg.get("abs", True)))
self.tcs.set(bool(vcfg.get("tcs", False)))
try:
self.frame.after(200, self._tick)
except tk.TclError:
pass
# Env / Ign
self.amb.set(float(snap.get("ambient_c", 20.0)))
self.ign.set(str(snap.get("ignition", "ON")))
# Live left
self.batt_v.set(f"{float(snap.get('battery_voltage', 12.6)):.2f}")
self.elx_v.set(f"{float(snap.get('elx_voltage', 0.0)):.2f}")
self.soc.set(f"{float(snap.get('battery_soc', 0.80)):.2f}")
# Live right
self.ibatt.set(f"{float(snap.get('battery_current_a', 0.0)):.2f}")
self.ialt.set(f"{float(snap.get('alternator_current_a', 0.0)):.2f}")
self.load_elx.set(f"{float(snap.get('elec_load_elx_a', 0.0)):.2f}")
self.load_bat.set(f"{float(snap.get('elec_load_batt_a', 0.0)):.2f}")
self.load_tot.set(f"{float(snap.get('elec_load_total_a', 0.0)):.2f}")
# Electrical config
self.bcap.set(float(ecfg.get("battery_capacity_ah", 8.0)))
self.brint.set(float(ecfg.get("battery_r_int_ohm", 0.020)))
self.alt_v.set(float(ecfg.get("alternator_reg_v", 14.2)))
self.alt_a.set(float(ecfg.get("alternator_rated_a", 20.0)))
self.alt_ci.set(int(ecfg.get("alt_cut_in_rpm", 1500)))
self.alt_fc.set(int(ecfg.get("alt_full_rpm", 4000)))
self.alt_eta.set(float(ecfg.get("alternator_mech_efficiency", 0.55)))
self.alt_rat.set(float(ecfg.get("alternator_pulley_ratio", 1.0)))
self.alt_d0.set(float(ecfg.get("alternator_drag_nm_idle", 0.15)))
self.alt_d1.set(float(ecfg.get("alternator_drag_nm_per_krpm", 0.05)))
def _apply_ign(self):
# Zündung live setzen
self.sim.v.set("ignition", self.ign_var.get())
self.sim.v.set("ignition", self.ign.get())
def apply(self):
# Ambient in State (wirkt sofort auf Thermik, andere Module lesen das)
try:
self.sim.v.set("ambient_c", float(self.ambient_var.get()))
except Exception:
pass
# Umgebung sofort in den State (wirkt auf Thermik)
try: self.sim.v.set("ambient_c", float(self.amb.get()))
except: pass
cfg = {
"vehicle": {
"type": self.type_var.get(),
"mass_kg": float(self.mass_var.get()),
"abs": bool(self.abs_var.get()),
"tcs": bool(self.tcs_var.get()),
"type": self.type.get(),
"mass_kg": float(self.mass.get()),
"abs": bool(self.abs.get()),
"tcs": bool(self.tcs.get()),
},
"electrical": {
"battery_capacity_ah": float(self.bcap.get()),
"battery_r_int_ohm": float(self.brint.get()),
"alternator_reg_v": float(self.alt_v.get()),
"alternator_rated_a": float(self.alt_a.get()),
"alt_cut_in_rpm": int(self.alt_cutin.get()),
"alt_full_rpm": int(self.alt_full.get()),
"alt_cut_in_rpm": int(self.alt_ci.get()),
"alt_full_rpm": int(self.alt_fc.get()),
"alternator_mech_efficiency": float(self.alt_eta.get()),
"alternator_pulley_ratio": float(self.alt_rat.get()),
"alternator_drag_nm_idle": float(self.alt_d0.get()),
"alternator_drag_nm_per_krpm": float(self.alt_d1.get()),
}
}
self.sim.load_config(cfg)
# Save/Load Hooks für Gesamt-Export
def save_into_config(self, out: Dict[str, Any]) -> None:
out.setdefault("vehicle", {})
out["vehicle"].update({
"type": self.type_var.get(),
"mass_kg": float(self.mass_var.get()),
"abs": bool(self.abs_var.get()),
"tcs": bool(self.tcs_var.get()),
out.setdefault("vehicle", {}).update({
"type": self.type.get(),
"mass_kg": float(self.mass.get()),
"abs": bool(self.abs.get()),
"tcs": bool(self.tcs.get()),
})
out.setdefault("electrical", {})
out["electrical"].update({
out.setdefault("electrical", {}).update({
"battery_capacity_ah": float(self.bcap.get()),
"battery_r_int_ohm": float(self.brint.get()),
"alternator_reg_v": float(self.alt_v.get()),
"alternator_rated_a": float(self.alt_a.get()),
"alt_cut_in_rpm": int(self.alt_cutin.get()),
"alt_full_rpm": int(self.alt_full.get()),
"alt_cut_in_rpm": int(self.alt_ci.get()),
"alt_full_rpm": int(self.alt_fc.get()),
"alternator_mech_efficiency": float(self.alt_eta.get()),
"alternator_pulley_ratio": float(self.alt_rat.get()),
"alternator_drag_nm_idle": float(self.alt_d0.get()),
"alternator_drag_nm_per_krpm": float(self.alt_d1.get()),
})
def load_from_config(self, cfg: Dict[str, Any]) -> None:
vcfg = cfg.get("vehicle", {})
self.type_var.set(vcfg.get("type", self.type_var.get()))
self.mass_var.set(vcfg.get("mass_kg", self.mass_var.get()))
self.abs_var.set(vcfg.get("abs", self.abs_var.get()))
self.tcs_var.set(vcfg.get("tcs", self.tcs_var.get()))
ecfg = cfg.get("electrical", {})
vcfg = cfg.get("vehicle", {}); ecfg = cfg.get("electrical", {})
self.type.set(vcfg.get("type", self.type.get()))
self.mass.set(vcfg.get("mass_kg", self.mass.get()))
self.abs.set(vcfg.get("abs", self.abs.get()))
self.tcs.set(vcfg.get("tcs", self.tcs.get()))
self.bcap.set(ecfg.get("battery_capacity_ah", self.bcap.get()))
self.brint.set(ecfg.get("battery_r_int_ohm", self.brint.get()))
self.alt_v.set(ecfg.get("alternator_reg_v", self.alt_v.get()))
self.alt_a.set(ecfg.get("alternator_rated_a", self.alt_a.get()))
self.alt_cutin.set(ecfg.get("alt_cut_in_rpm", self.alt_cutin.get()))
self.alt_full.set(ecfg.get("alt_full_rpm", self.alt_full.get()))
# wichtig: NICHT self.sim.load_config(cfg) hier!
self.alt_ci.set(ecfg.get("alt_cut_in_rpm", self.alt_ci.get()))
self.alt_fc.set(ecfg.get("alt_full_rpm", self.alt_fc.get()))
self.alt_eta.set(ecfg.get("alternator_mech_efficiency", self.alt_eta.get()))
self.alt_rat.set(ecfg.get("alternator_pulley_ratio", self.alt_rat.get()))
self.alt_d0.set(ecfg.get("alternator_drag_nm_idle", self.alt_d0.get()))
self.alt_d1.set(ecfg.get("alternator_drag_nm_per_krpm", self.alt_d1.get()))
# wichtig: hier KEIN sim.load_config()

View File

@@ -0,0 +1,149 @@
# =============================
# app/simulation/ui/cooling.py
# =============================
from __future__ import annotations
import tkinter as tk
from tkinter import ttk
from app.simulation.modules.cooling import COOLING_DEFAULTS
from app.simulation.ui import UITab
class CoolingTab(UITab):
NAME = "cooling"
TITLE = "Kühlung"
PRIO = 11
def __init__(self, parent, sim):
self.sim = sim
self.frame = ttk.Frame(parent, padding=8)
for c in (0,1,2,3):
self.frame.columnconfigure(c, weight=1)
# ---------- Linke Spalte ----------
rowL = 0
def L(lbl, var, w=12, kind="entry", values=None):
nonlocal rowL
ttk.Label(self.frame, text=lbl).grid(row=rowL, column=0, sticky="w")
if kind == "entry":
ttk.Entry(self.frame, textvariable=var, width=w).grid(row=rowL, column=1, sticky="w")
elif kind == "combo":
cb = ttk.Combobox(self.frame, textvariable=var, state="readonly", values=values or [])
cb.grid(row=rowL, column=1, sticky="w")
elif kind == "check":
ttk.Checkbutton(self.frame, variable=var).grid(row=rowL, column=1, sticky="w")
rowL += 1
self.t_open = tk.DoubleVar(); L("Thermostat öffnet ab [°C]", self.t_open)
self.t_full = tk.DoubleVar(); L("Thermostat voll offen [°C]", self.t_full)
self.rad_base = tk.DoubleVar(); L("Radiator-Basis [W/K]", self.rad_base)
self.ram_gain = tk.DoubleVar(); L("Fahrtwind-Zuwachs [W/K pro km/h]", self.ram_gain)
self.amb_c = tk.DoubleVar(); L("Umgebung [°C]", self.amb_c)
self.Cc = tk.DoubleVar(); L("Wärmekapazität Kühlmittel [J/K]", self.Cc)
self.Coil = tk.DoubleVar(); L("Wärmekapazität Öl [J/K]", self.Coil)
ttk.Separator(self.frame).grid(row=rowL, column=0, columnspan=2, sticky="ew", pady=(8,6)); rowL += 1
# Versorgung & Nachlauf (links)
self.feed = tk.StringVar()
self.afteren = tk.BooleanVar()
self.afterth = tk.DoubleVar()
self.aftermax= tk.DoubleVar()
L("Lüfter-Versorgung", self.feed, kind="combo", values=["elx", "battery"])
L("Nachlauf aktiv", self.afteren, kind="check")
L("Nachlauf-Schwelle [°C]", self.afterth)
L("Nachlauf max. Zeit [s]", self.aftermax)
# ---------- Rechte Spalte ----------
rowR = 0
def R(lbl, var, w=12):
nonlocal rowR
ttk.Label(self.frame, text=lbl).grid(row=rowR, column=2, sticky="w")
ttk.Entry(self.frame, textvariable=var, width=w).grid(row=rowR, column=3, sticky="w")
rowR += 1
self.f1_on = tk.DoubleVar(); R("Lüfter 1 EIN [°C]", self.f1_on)
self.f1_off = tk.DoubleVar(); R("Lüfter 1 AUS [°C]", self.f1_off)
self.f2_on = tk.DoubleVar(); R("Lüfter 2 EIN [°C]", self.f2_on)
self.f2_off = tk.DoubleVar(); R("Lüfter 2 AUS [°C]", self.f2_off)
ttk.Separator(self.frame).grid(row=rowR, column=2, columnspan=2, sticky="ew", pady=(8,6)); rowR += 1
self.f1_w = tk.DoubleVar(); R("Lüfter 1 Leistung [W]", self.f1_w)
self.f2_w = tk.DoubleVar(); R("Lüfter 2 Leistung [W]", self.f2_w)
self.f1_air = tk.DoubleVar(); R("Lüfter 1 Luftstrom [W/K]", self.f1_air)
self.f2_air = tk.DoubleVar(); R("Lüfter 2 Luftstrom [W/K]", self.f2_air)
ttk.Separator(self.frame).grid(row=rowR, column=2, columnspan=2, sticky="ew", pady=(8,6)); rowR += 1
self.Uoc = tk.DoubleVar(); R("Öl↔Kühlmittel Kopplung [W/K]", self.Uoc)
self.Uoil = tk.DoubleVar(); R("Öl→Umgebung [W/K]", self.Uoil)
self.frac = tk.DoubleVar(); R("Motorwärme→Kühlmittel [%]", self.frac)
# ---------- Buttons ----------
rowBtns = max(rowL, rowR) + 1
btnrow = ttk.Frame(self.frame)
btnrow.grid(row=rowBtns, column=0, columnspan=4, sticky="w", pady=(8,0))
ttk.Button(btnrow, text="Aktualisieren", command=self.refresh).pack(side="left")
ttk.Button(btnrow, text="Anwenden", command=self.apply).pack(side="left", padx=(8,0))
self.refresh()
def refresh(self):
c = dict(COOLING_DEFAULTS)
c.update(self.sim.v.config.get("cooling", {}))
# links
self.t_open.set(c["thermostat_open_c"])
self.t_full.set(c["thermostat_full_c"])
self.rad_base.set(c["rad_base_u_w_per_k"])
self.ram_gain.set(c["ram_air_gain_per_kmh"])
self.amb_c.set(self.sim.v.get("ambient_c", 20.0))
self.Cc.set(c["coolant_thermal_cap_j_per_k"])
self.Coil.set(c["oil_thermal_cap_j_per_k"])
# Versorgung & Nachlauf
self.feed.set(c.get("fan_power_feed", "elx"))
self.afteren.set(bool(c.get("fan_afterrun_enable", False)))
self.afterth.set(float(c.get("fan_afterrun_threshold_c", 105.0)))
self.aftermax.set(float(c.get("fan_afterrun_max_s", 300.0)))
# rechts
self.f1_on.set(c["fan1_on_c"]); self.f1_off.set(c["fan1_off_c"])
self.f2_on.set(c["fan2_on_c"]); self.f2_off.set(c["fan2_off_c"])
self.f1_w.set(c["fan1_power_w"]); self.f2_w.set(c["fan2_power_w"])
self.f1_air.set(c["fan1_airflow_gain"]); self.f2_air.set(c["fan2_airflow_gain"])
self.Uoc.set(c["oil_coolant_u_w_per_k"])
self.Uoil.set(c["oil_to_amb_u_w_per_k"])
self.frac.set(c["engine_heat_frac_to_coolant"]*100.0)
def apply(self):
cfg = {"cooling": {
# links
"thermostat_open_c": float(self.t_open.get()),
"thermostat_full_c": float(self.t_full.get()),
"rad_base_u_w_per_k": float(self.rad_base.get()),
"ram_air_gain_per_kmh": float(self.ram_gain.get()),
"coolant_thermal_cap_j_per_k": float(self.Cc.get()),
"oil_thermal_cap_j_per_k": float(self.Coil.get()),
# Versorgung & Nachlauf
"fan_power_feed": self.feed.get(),
"fan_afterrun_enable": bool(self.afteren.get()),
"fan_afterrun_threshold_c": float(self.afterth.get()),
"fan_afterrun_max_s": float(self.aftermax.get()),
# rechts
"fan1_on_c": float(self.f1_on.get()),
"fan1_off_c": float(self.f1_off.get()),
"fan2_on_c": float(self.f2_on.get()),
"fan2_off_c": float(self.f2_off.get()),
"fan1_power_w": float(self.f1_w.get()),
"fan2_power_w": float(self.f2_w.get()),
"fan1_airflow_gain": float(self.f1_air.get()),
"fan2_airflow_gain": float(self.f2_air.get()),
"oil_coolant_u_w_per_k": float(self.Uoc.get()),
"oil_to_amb_u_w_per_k": float(self.Uoil.get()),
"engine_heat_frac_to_coolant": float(self.frac.get())/100.0,
}}
self.sim.load_config(cfg)

View File

@@ -5,180 +5,182 @@
from __future__ import annotations
import tkinter as tk
from tkinter import ttk
from typing import Dict, Any
# Wichtig: Defaults aus dem Modul importieren
from app.simulation.modules.engine import ENGINE_DEFAULTS
from app.simulation.ui import UITab
class EngineTab(UITab):
NAME = "engine"
TITLE = "Motor"
PRIO = 10
def __init__(self, parent, sim):
self.sim = sim
self.frame = ttk.Frame(parent, padding=8)
self.frame.columnconfigure(1, weight=1)
for c in (0,1,2,3): self.frame.columnconfigure(c, weight=1)
# ------------- Widgets anlegen (OHNE Defaultwerte eintragen) --------------
row = 0
ttk.Label(self.frame, text="Leerlauf [RPM]").grid(row=row, column=0, sticky="w"); row+=1
self.idle_var = tk.IntVar(); ttk.Entry(self.frame, textvariable=self.idle_var, width=10)\
.grid(row=row-1, column=1, sticky="w")
# ---------- Linke Spalte ----------
rowL = 0
def L(lbl, var, w=12, kind="entry", values=None):
nonlocal rowL
ttk.Label(self.frame, text=lbl).grid(row=rowL, column=0, sticky="w")
if kind == "entry":
ttk.Entry(self.frame, textvariable=var, width=w).grid(row=rowL, column=1, sticky="w")
elif kind == "combo":
ttk.Combobox(self.frame, textvariable=var, state="readonly",
values=values or [], width=w).grid(row=rowL, column=1, sticky="w")
rowL += 1
ttk.Label(self.frame, text="Max RPM").grid(row=row, column=0, sticky="w"); row+=1
self.maxrpm_var = tk.IntVar(); ttk.Entry(self.frame, textvariable=self.maxrpm_var, width=10)\
.grid(row=row-1, column=1, sticky="w")
self.idle = tk.IntVar(); L("Leerlauf [RPM]", self.idle)
self.maxrpm = tk.IntVar(); L("Max RPM", self.maxrpm)
self.rise = tk.IntVar(); L("Anstieg [RPM/s]", self.rise)
self.fall = tk.IntVar(); L("Abfall [RPM/s]", self.fall)
self.curve = tk.StringVar(); L("Gaspedal-Kennlinie", self.curve, kind="combo",
values=["linear","progressive","aggressive"])
ttk.Label(self.frame, text="Anstieg [RPM/s]").grid(row=row, column=0, sticky="w"); row+=1
self.rise_var = tk.IntVar(); ttk.Entry(self.frame, textvariable=self.rise_var, width=10)\
.grid(row=row-1, column=1, sticky="w")
ttk.Separator(self.frame).grid(row=rowL, column=0, columnspan=2, sticky="ew", pady=(8,6)); rowL += 1
ttk.Label(self.frame, text="Abfall [RPM/s]").grid(row=row, column=0, sticky="w"); row+=1
self.fall_var = tk.IntVar(); ttk.Entry(self.frame, textvariable=self.fall_var, width=10)\
.grid(row=row-1, column=1, sticky="w")
self.power = tk.DoubleVar(); L("Motorleistung [kW]", self.power)
self.tqpeak = tk.DoubleVar(); L("Drehmoment-Peak [RPM]", self.tqpeak)
ttk.Label(self.frame, text="Gaspedal-Kennlinie").grid(row=row, column=0, sticky="w"); row+=1
self.thr_curve = tk.StringVar()
ttk.Combobox(self.frame, textvariable=self.thr_curve, state="readonly",
values=["linear","progressive","aggressive"])\
.grid(row=row-1, column=1, sticky="w")
ttk.Separator(self.frame).grid(row=rowL, column=0, columnspan=2, sticky="ew", pady=(8,6)); rowL += 1
ttk.Separator(self.frame).grid(row=row, column=0, columnspan=2, sticky="ew", pady=(8,6)); row+=1
self.st_nom = tk.DoubleVar(); L("Starter Nenn-RPM", self.st_nom)
self.st_vmin= tk.DoubleVar(); L("Starter min. Spannung [V]", self.st_vmin)
self.st_thr = tk.DoubleVar(); L("Start-Schwelle [RPM]", self.st_thr)
self.stall = tk.DoubleVar(); L("Stall-Grenze [RPM]", self.stall)
# Leistung
ttk.Label(self.frame, text="Motorleistung [kW]").grid(row=row, column=0, sticky="w"); row+=1
self.power_kw = tk.DoubleVar(); ttk.Entry(self.frame, textvariable=self.power_kw, width=10)\
.grid(row=row-1, column=1, sticky="w")
ttk.Separator(self.frame).grid(row=rowL, column=0, columnspan=2, sticky="ew", pady=(8,6)); rowL += 1
ttk.Label(self.frame, text="Drehmoment-Peak [RPM]").grid(row=row, column=0, sticky="w"); row+=1
self.peak_rpm = tk.DoubleVar(); ttk.Entry(self.frame, textvariable=self.peak_rpm, width=10)\
.grid(row=row-1, column=1, sticky="w")
self.o_idle = tk.DoubleVar(); L("Öldruck Leerlauf [bar]", self.o_idle)
self.o_slope= tk.DoubleVar(); L("Öldruck Steigung [bar/krpm]", self.o_slope)
self.o_floor= tk.DoubleVar(); L("Öldruck Boden [bar]", self.o_floor)
ttk.Separator(self.frame).grid(row=row, column=0, columnspan=2, sticky="ew", pady=(8,6)); row+=1
# ---------- Rechte Spalte ----------
rowR = 0
def R(lbl, var, w=12, kind="entry"):
nonlocal rowR
ttk.Label(self.frame, text=lbl).grid(row=rowR, column=2, sticky="w")
if kind == "entry":
ttk.Entry(self.frame, textvariable=var, width=w).grid(row=rowR, column=3, sticky="w")
elif kind == "label":
ttk.Label(self.frame, textvariable=var).grid(row=rowR, column=3, sticky="w")
elif kind == "scale":
s = ttk.Scale(self.frame, from_=0.0, to=100.0, variable=var,
command=lambda _=None: self._on_pedal_change())
s.grid(row=rowR, column=3, sticky="ew")
rowR += 1
# Starter
ttk.Label(self.frame, text="Starter Nenn-RPM").grid(row=row, column=0, sticky="w"); row+=1
self.starter_nom = tk.DoubleVar(); ttk.Entry(self.frame, textvariable=self.starter_nom, width=10)\
.grid(row=row-1, column=1, sticky="w")
self.dk_idle = tk.DoubleVar(); R("DK min Leerlauf [%]", self.dk_idle)
self.dk_over = tk.DoubleVar(); R("DK Schub [%]", self.dk_over)
self.dk_tau = tk.DoubleVar(); R("DK Zeitkonstante [s]", self.dk_tau)
self.tq_kp = tk.DoubleVar(); R("Torque-Kp", self.tq_kp)
self.tq_ki = tk.DoubleVar(); R("Torque-Ki", self.tq_ki)
ttk.Label(self.frame, text="Starter min. Spannung [V]").grid(row=row, column=0, sticky="w"); row+=1
self.starter_vmin = tk.DoubleVar(); ttk.Entry(self.frame, textvariable=self.starter_vmin, width=10)\
.grid(row=row-1, column=1, sticky="w")
ttk.Separator(self.frame).grid(row=rowR, column=2, columnspan=2, sticky="ew", pady=(8,6)); rowR += 1
ttk.Label(self.frame, text="Start-Schwelle [RPM]").grid(row=row, column=0, sticky="w"); row+=1
self.start_th = tk.DoubleVar(); ttk.Entry(self.frame, textvariable=self.start_th, width=10)\
.grid(row=row-1, column=1, sticky="w")
self.jit_idle= tk.DoubleVar(); R("Jitter Leerlauf [±RPM]", self.jit_idle)
self.jit_high= tk.DoubleVar(); R("Jitter hoch [±RPM]", self.jit_high)
self.jit_tau = tk.DoubleVar(); R("Jitter-Zeitkonstante [s]", self.jit_tau)
self.jit_off = tk.DoubleVar(); R("Jitter aus unter [RPM]", self.jit_off)
ttk.Label(self.frame, text="Stall-Grenze [RPM]").grid(row=row, column=0, sticky="w"); row+=1
self.stall_rpm = tk.DoubleVar(); ttk.Entry(self.frame, textvariable=self.stall_rpm, width=10)\
.grid(row=row-1, column=1, sticky="w")
ttk.Separator(self.frame).grid(row=rowR, column=2, columnspan=2, sticky="ew", pady=(8,6)); rowR += 1
ttk.Separator(self.frame).grid(row=row, column=0, columnspan=2, sticky="ew", pady=(8,6)); row+=1
self.amb_c = tk.DoubleVar(); R("Umgebung [°C]", self.amb_c)
self.cold_k = tk.DoubleVar(); R("Kalt-Leerlauf +/°C [RPM/°C]", self.cold_k)
self.cold_max=tk.DoubleVar(); R("Kalt-Leerlauf max [RPM]", self.cold_max)
# Thermik (analog Variablen ohne Defaults anlegen) ...
self.amb_c = tk.DoubleVar(); self.c_warm = tk.DoubleVar(); self.c_cool = tk.DoubleVar()
self.o_warm = tk.DoubleVar(); self.o_cool = tk.DoubleVar()
self.cold_gain = tk.DoubleVar(); self.cold_gain_max = tk.DoubleVar()
# (Labels/Entries spar ich hier ab wie gehabt weiterführen)
ttk.Separator(self.frame).grid(row=rowR, column=2, columnspan=2, sticky="ew", pady=(8,6)); rowR += 1
# Öl, DBW, Jitter, Pedal
self.o_idle = tk.DoubleVar(); self.o_slope = tk.DoubleVar(); self.o_floor = tk.DoubleVar()
self.plate_idle_min = tk.DoubleVar(); self.plate_overrun = tk.DoubleVar(); self.plate_tau = tk.DoubleVar()
self.torque_kp = tk.DoubleVar(); self.torque_ki = tk.DoubleVar()
self.jitter_idle = tk.DoubleVar(); self.jitter_high = tk.DoubleVar()
self.jitter_tau = tk.DoubleVar(); self.jitter_off = tk.DoubleVar()
self.pedal = tk.DoubleVar(); R("Gaspedal [%]", self.pedal, kind="scale")
ttk.Label(self.frame, text="Gaspedal [%]").grid(row=row, column=0, sticky="w"); row+=1
self.pedal_var = tk.DoubleVar()
self.pedal_scale = ttk.Scale(self.frame, from_=0.0, to=100.0, variable=self.pedal_var)
self.pedal_scale.grid(row=row-1, column=1, sticky="ew")
# ---------- Buttons ----------
rowBtns = max(rowL, rowR) + 1
btn = ttk.Frame(self.frame); btn.grid(row=rowBtns, column=0, columnspan=4, sticky="w", pady=(8,0))
ttk.Button(btn, text="Aktualisieren", command=self.refresh).pack(side="left")
ttk.Button(btn, text="Anwenden", command=self.apply).pack(side="left", padx=(8,0))
# Buttons
row += 1
btnrow = ttk.Frame(self.frame); btnrow.grid(row=row, column=0, columnspan=2, sticky="w", pady=(8,0))
ttk.Button(btnrow, text="Aktualisieren", command=self.refresh).pack(side="left")
ttk.Button(btnrow, text="Anwenden", command=self.apply).pack(side="left", padx=(8,0))
# Zum Start einmal „live“ laden:
self.refresh()
# liest IMMER effektiv: config.get(key, ENGINE_DEFAULTS[key])
def _on_pedal_change(self):
try: self.sim.v.set("throttle_pedal_pct", float(self.pedal.get()))
except: pass
def refresh(self):
e = dict(ENGINE_DEFAULTS)
e.update(self.sim.v.config.get("engine", {})) # Config über default mergen
e = dict(ENGINE_DEFAULTS); e.update(self.sim.v.config.get("engine", {}))
self.idle_var.set(e["idle_rpm"])
self.maxrpm_var.set(e["max_rpm"])
self.rise_var.set(e["rpm_rise_per_s"])
self.fall_var.set(e["rpm_fall_per_s"])
self.thr_curve.set(e["throttle_curve"])
self.power_kw.set(e["engine_power_kw"])
self.peak_rpm.set(e["torque_peak_rpm"])
# links
self.idle.set(e["idle_rpm"])
self.maxrpm.set(e["max_rpm"])
self.rise.set(e["rpm_rise_per_s"])
self.fall.set(e["rpm_fall_per_s"])
self.curve.set(e["throttle_curve"])
self.starter_nom.set(e["starter_rpm_nominal"])
self.starter_vmin.set(e["starter_voltage_min"])
self.start_th.set(e["start_rpm_threshold"])
self.stall_rpm.set(e["stall_rpm"])
self.power.set(e["engine_power_kw"])
self.tqpeak.set(e["torque_peak_rpm"])
self.amb_c.set(e["coolant_ambient_c"])
self.c_warm.set(e["coolant_warm_rate_c_per_s"])
self.c_cool.set(e["coolant_cool_rate_c_per_s"])
self.o_warm.set(e["oil_warm_rate_c_per_s"])
self.o_cool.set(e["oil_cool_rate_c_per_s"])
self.cold_gain.set(e["idle_cold_gain_per_deg"])
self.cold_gain_max.set(e["idle_cold_gain_max"])
self.st_nom.set(e["starter_rpm_nominal"])
self.st_vmin.set(e["starter_voltage_min"])
self.st_thr.set(e["start_rpm_threshold"])
self.stall.set(e["stall_rpm"])
self.o_idle.set(e["oil_pressure_idle_bar"])
self.o_slope.set(e["oil_pressure_slope_bar_per_krpm"])
self.o_floor.set(e["oil_pressure_off_floor_bar"])
self.plate_idle_min.set(e["throttle_plate_idle_min_pct"])
self.plate_overrun.set(e["throttle_plate_overrun_pct"])
self.plate_tau.set(e["throttle_plate_tau_s"])
self.torque_kp.set(e["torque_ctrl_kp"])
self.torque_ki.set(e["torque_ctrl_ki"])
# rechts
self.dk_idle.set(e["throttle_plate_idle_min_pct"])
self.dk_over.set(e["throttle_plate_overrun_pct"])
self.dk_tau.set(e["throttle_plate_tau_s"])
self.tq_kp.set(e["torque_ctrl_kp"])
self.tq_ki.set(e["torque_ctrl_ki"])
self.jitter_idle.set(e["rpm_jitter_idle_amp_rpm"])
self.jitter_high.set(e["rpm_jitter_high_amp_rpm"])
self.jitter_tau.set(e["rpm_jitter_tau_s"])
self.jitter_off.set(e["rpm_jitter_off_threshold_rpm"])
self.jit_idle.set(e["rpm_jitter_idle_amp_rpm"])
self.jit_high.set(e["rpm_jitter_high_amp_rpm"])
self.jit_tau.set(e["rpm_jitter_tau_s"])
self.jit_off.set(e["rpm_jitter_off_threshold_rpm"])
self.pedal_var.set(e["throttle_pedal_pct"])
self.amb_c.set(e["coolant_ambient_c"])
self.cold_k.set(e["idle_cold_gain_per_deg"])
self.cold_max.set(e["idle_cold_gain_max"])
self.pedal.set(e["throttle_pedal_pct"])
self._on_pedal_change()
def apply(self):
# Nur hier wird geschrieben
cfg = {"engine": {
"idle_rpm": int(self.idle_var.get()),
"max_rpm": int(self.maxrpm_var.get()),
"rpm_rise_per_s": int(self.rise_var.get()),
"rpm_fall_per_s": int(self.fall_var.get()),
"throttle_curve": self.thr_curve.get(),
"engine_power_kw": float(self.power_kw.get()),
"torque_peak_rpm": float(self.peak_rpm.get()),
"starter_rpm_nominal": float(self.starter_nom.get()),
"starter_voltage_min": float(self.starter_vmin.get()),
"start_rpm_threshold": float(self.start_th.get()),
"stall_rpm": float(self.stall_rpm.get()),
"coolant_ambient_c": float(self.amb_c.get()),
"coolant_warm_rate_c_per_s": float(self.c_warm.get()),
"coolant_cool_rate_c_per_s": float(self.c_cool.get()),
"oil_warm_rate_c_per_s": float(self.o_warm.get()),
"oil_cool_rate_c_per_s": float(self.o_cool.get()),
"idle_cold_gain_per_deg": float(self.cold_gain.get()),
"idle_cold_gain_max": float(self.cold_gain_max.get()),
"idle_rpm": int(self.idle.get()),
"max_rpm": int(self.maxrpm.get()),
"rpm_rise_per_s": int(self.rise.get()),
"rpm_fall_per_s": int(self.fall.get()),
"throttle_curve": self.curve.get(),
"engine_power_kw": float(self.power.get()),
"torque_peak_rpm": float(self.tqpeak.get()),
"starter_rpm_nominal": float(self.st_nom.get()),
"starter_voltage_min": float(self.st_vmin.get()),
"start_rpm_threshold": float(self.st_thr.get()),
"stall_rpm": float(self.stall.get()),
"oil_pressure_idle_bar": float(self.o_idle.get()),
"oil_pressure_slope_bar_per_krpm": float(self.o_slope.get()),
"oil_pressure_off_floor_bar": float(self.o_floor.get()),
"throttle_plate_idle_min_pct": float(self.plate_idle_min.get()),
"throttle_plate_overrun_pct": float(self.plate_overrun.get()),
"throttle_plate_tau_s": float(self.plate_tau.get()),
"torque_ctrl_kp": float(self.torque_kp.get()),
"torque_ctrl_ki": float(self.torque_ki.get()),
"rpm_jitter_idle_amp_rpm": float(self.jitter_idle.get()),
"rpm_jitter_high_amp_rpm": float(self.jitter_high.get()),
"rpm_jitter_tau_s": float(self.jitter_tau.get()),
"rpm_jitter_off_threshold_rpm": float(self.jitter_off.get()),
"throttle_pedal_pct": float(self.pedal_var.get()),
"throttle_plate_idle_min_pct": float(self.dk_idle.get()),
"throttle_plate_overrun_pct": float(self.dk_over.get()),
"throttle_plate_tau_s": float(self.dk_tau.get()),
"torque_ctrl_kp": float(self.tq_kp.get()),
"torque_ctrl_ki": float(self.tq_ki.get()),
"rpm_jitter_idle_amp_rpm": float(self.jit_idle.get()),
"rpm_jitter_high_amp_rpm": float(self.jit_high.get()),
"rpm_jitter_tau_s": float(self.jit_tau.get()),
"rpm_jitter_off_threshold_rpm": float(self.jit_off.get()),
"coolant_ambient_c": float(self.amb_c.get()),
"idle_cold_gain_per_deg": float(self.cold_k.get()),
"idle_cold_gain_max": float(self.cold_max.get()),
"throttle_pedal_pct": float(self.pedal.get()),
}}
self.sim.load_config(cfg)

View File

@@ -1,72 +1,241 @@
# =============================
# app/simulation/ui/gearbox.py
# =============================
from __future__ import annotations
import tkinter as tk
from tkinter import ttk
from typing import Dict, Any, List
from typing import Dict, Any
from app.simulation.ui import UITab
from app.simulation.modules.gearbox import GEARBOX_DEFAULTS
class GearboxTab(UITab):
NAME = "gearbox"
TITLE = "Getriebe"
PRIO = 10
TITLE = "Getriebe & Antrieb"
PRIO = 12
def __init__(self, parent, sim):
self.sim = sim
self.frame = ttk.Frame(parent, padding=8)
self.frame.columnconfigure(1, weight=1)
for c in (0,1,2,3): self.frame.columnconfigure(c, weight=1)
ttk.Label(self.frame, text="Gänge (inkl. Leerlauf als 0)").grid(row=0, column=0, sticky="w")
self.gears_var = tk.IntVar(value=6)
ttk.Spinbox(self.frame, from_=1, to=10, textvariable=self.gears_var, width=6, command=self._rebuild_ratios).grid(row=0, column=1, sticky="w")
# ---------- Linke Spalte ----------
rowL = 0
def L(lbl, var=None, w=12, kind="entry", values=None):
nonlocal rowL
ttk.Label(self.frame, text=lbl).grid(row=rowL, column=0, sticky="w")
if kind == "entry":
ttk.Entry(self.frame, textvariable=var, width=w).grid(row=rowL, column=1, sticky="w")
elif kind == "label":
ttk.Label(self.frame, textvariable=var).grid(row=rowL, column=1, sticky="w")
elif kind == "combo":
ttk.Combobox(self.frame, textvariable=var, state="readonly",
values=values or [], width=w).grid(row=rowL, column=1, sticky="w")
elif kind == "buttons":
f = ttk.Frame(self.frame); f.grid(row=rowL, column=1, sticky="w")
ttk.Button(f, text="", width=3, command=self.shift_down).pack(side="left", padx=(0,4))
ttk.Button(f, text="N", width=3, command=self.set_neutral).pack(side="left", padx=(0,4))
ttk.Button(f, text="", width=3, command=self.shift_up).pack(side="left")
rowL += 1
self.reverse_var = tk.BooleanVar(value=False)
ttk.Checkbutton(self.frame, text="Rückwärtsgang vorhanden", variable=self.reverse_var).grid(row=1, column=0, columnspan=2, sticky="w")
# Live/Controls (Labels → werden im _tick() live aktualisiert)
self.gear_var = tk.StringVar(); L("Gang", self.gear_var, kind="label")
L("Schalten", kind="buttons")
self.speed_var = tk.StringVar(); L("Geschwindigkeit [km/h]", self.speed_var, kind="label")
self.clutch_v = tk.StringVar(); L("Kupplung [%]", self.clutch_v, kind="label")
self.slip_v = tk.StringVar(); L("Reifenschlupf [%]", self.slip_v, kind="label")
ttk.Label(self.frame, text="km/h pro 1000 RPM je Gang").grid(row=2, column=0, sticky="w", pady=(6,0))
self.ratio_frame = ttk.Frame(self.frame); self.ratio_frame.grid(row=3, column=0, columnspan=2, sticky="ew")
self.ratio_vars: List[tk.DoubleVar] = []
self._rebuild_ratios()
ttk.Separator(self.frame).grid(row=rowL, column=0, columnspan=2, sticky="ew", pady=(8,6)); rowL += 1
ttk.Button(self.frame, text="Anwenden", command=self.apply).grid(row=4, column=0, pady=(8,0), sticky="w")
# Kupplung/Automation
self.cl_Tmax = tk.DoubleVar(); L("Kupplung Tmax [Nm]", self.cl_Tmax)
self.cl_agr = tk.DoubleVar(); L("Aggressivität [0..1]", self.cl_agr)
self.cl_curve= tk.StringVar(); L("Kupplungs-Kurve", self.cl_curve, kind="combo",
values=["linear","progressive","soft"])
self.cl_drag = tk.DoubleVar(); L("Kupplungs-Schlepp [Nm]", self.cl_drag)
self.sh_time = tk.DoubleVar(); L("Schaltzeit [s]", self.sh_time)
self.sync_rb = tk.DoubleVar(); L("Sync-Band [RPM]", self.sync_rb)
def _rebuild_ratios(self):
for w in self.ratio_frame.winfo_children(): w.destroy()
self.ratio_vars.clear()
n = int(self.gears_var.get())
for i in range(1, n+1):
ttk.Label(self.ratio_frame, text=f"Gang {i}").grid(row=i-1, column=0, sticky="w")
v = tk.DoubleVar(value= [12.0,19.0,25.0,32.0,38.0,45.0][i-1] if i-1 < 6 else 45.0)
ttk.Entry(self.ratio_frame, textvariable=v, width=8).grid(row=i-1, column=1, sticky="w", padx=(6,12))
self.ratio_vars.append(v)
# ---------- Rechte Spalte ----------
rowR = 0
def R(lbl, var=None, w=12, kind="entry"):
nonlocal rowR
ttk.Label(self.frame, text=lbl).grid(row=rowR, column=2, sticky="w")
if kind == "entry":
ttk.Entry(self.frame, textvariable=var, width=w).grid(row=rowR, column=3, sticky="w")
elif kind == "label":
ttk.Label(self.frame, textvariable=var).grid(row=rowR, column=3, sticky="w")
rowR += 1
# Übersetzungen / Rad
self.primary = tk.DoubleVar(); R("Primärübersetzung [-]", self.primary)
self.zf = tk.IntVar(); R("Ritzel vorn [Z]", self.zf)
self.zr = tk.IntVar(); R("Ritzel hinten [Z]", self.zr)
self.rwheel = tk.DoubleVar(); R("Radradius [m]", self.rwheel)
self.eta = tk.DoubleVar(); R("Wirkungsgrad [-]", self.eta)
self.couple = tk.DoubleVar(); R("RPM-Kopplung [0..1]", self.couple)
ttk.Separator(self.frame).grid(row=rowR, column=2, columnspan=2, sticky="ew", pady=(8,6)); rowR += 1
# Gangübersetzungen 1..6
self.g1 = tk.DoubleVar(); R("Gang 1 Ratio", self.g1)
self.g2 = tk.DoubleVar(); R("Gang 2 Ratio", self.g2)
self.g3 = tk.DoubleVar(); R("Gang 3 Ratio", self.g3)
self.g4 = tk.DoubleVar(); R("Gang 4 Ratio", self.g4)
self.g5 = tk.DoubleVar(); R("Gang 5 Ratio", self.g5)
self.g6 = tk.DoubleVar(); R("Gang 6 Ratio", self.g6)
ttk.Separator(self.frame).grid(row=rowR, column=2, columnspan=2, sticky="ew", pady=(8,6)); rowR += 1
# Widerstände / Reifen
self.c_rr = tk.DoubleVar(); R("Rollkoeff. c_rr", self.c_rr)
self.rho = tk.DoubleVar(); R("Luftdichte [kg/m³]", self.rho)
self.cd = tk.DoubleVar(); R("c_d [-]", self.cd)
self.A = tk.DoubleVar(); R("Stirnfläche [m²]", self.A)
self.mu_p = tk.DoubleVar(); R("Reifen μ_peak", self.mu_p)
self.mu_s = tk.DoubleVar(); R("Reifen μ_slide", self.mu_s)
self.w_rear = tk.DoubleVar(); R("Gewichtsanteil hinten [-]", self.w_rear)
# ---------- Buttons ----------
rowBtns = max(rowL, rowR) + 1
btn = ttk.Frame(self.frame); btn.grid(row=rowBtns, column=0, columnspan=4, sticky="w", pady=(8,0))
ttk.Button(btn, text="Aktualisieren", command=self.refresh).pack(side="left")
ttk.Button(btn, text="Anwenden", command=self.apply).pack(side="left", padx=(8,0))
self.refresh()
self._tick()
# --- Live-Update nur für Labels ---
def _tick(self):
snap = self.sim.snapshot()
gear = int(snap.get("gear", 0))
self.gear_var.set("N" if gear == 0 else str(gear))
self.speed_var.set(f"{float(snap.get('speed_kmh', 0.0)):.1f}")
self.clutch_v.set(f"{float(snap.get('clutch_pct', 0.0)):.0f}")
self.slip_v.set(f"{float(snap.get('wheel_slip_pct', 0.0)):.0f}")
try:
self.frame.after(200, self._tick)
except tk.TclError:
pass
# --- Actions (Buttons) ---
def shift_up(self): self.sim.v.set("gear_shift_up", True)
def shift_down(self): self.sim.v.set("gear_shift_down", True)
def set_neutral(self): self.sim.v.set("gear_set_neutral", True)
# --- Data flow ---
def refresh(self):
# Live-Felder werden vom _tick() versorgt; hier nur Config mergen
g = dict(GEARBOX_DEFAULTS)
g.update(self.sim.v.config.get("gearbox", {}))
self.cl_Tmax.set(g["clutch_max_torque_nm"])
self.cl_agr.set(g["clutch_aggressiveness"])
self.cl_curve.set(g.get("clutch_curve", "linear"))
self.cl_drag.set(g["clutch_drag_nm"])
self.sh_time.set(g["shift_time_s"])
self.sync_rb.set(g["sync_rpm_band"])
self.primary.set(g["primary_ratio"])
self.zf.set(g["front_sprocket_teeth"])
self.zr.set(g["rear_sprocket_teeth"])
self.rwheel.set(g["wheel_radius_m"])
self.eta.set(g["drivetrain_efficiency"])
self.couple.set(g["rpm_couple_gain"])
ratios = list(g["gear_ratios"]) + [0.0]*7
self.g1.set(ratios[1]); self.g2.set(ratios[2]); self.g3.set(ratios[3])
self.g4.set(ratios[4]); self.g5.set(ratios[5]); self.g6.set(ratios[6])
self.c_rr.set(g["rolling_c"])
self.rho.set(g["air_density"])
self.cd.set(g["aero_cd"])
self.A.set(g["frontal_area_m2"])
self.mu_p.set(g["tire_mu_peak"])
self.mu_s.set(g["tire_mu_slide"])
self.w_rear.set(g["rear_static_weight_frac"])
def apply(self):
ratios = [float(v.get()) for v in self.ratio_vars]
cfg = {"gearbox": {
"num_gears": int(self.gears_var.get()),
"reverse": bool(self.reverse_var.get()),
"kmh_per_krpm": [0.0] + ratios # index 0 reserved for neutral
"clutch_max_torque_nm": float(self.cl_Tmax.get()),
"clutch_aggressiveness": float(self.cl_agr.get()),
"clutch_curve": self.cl_curve.get(),
"clutch_drag_nm": float(self.cl_drag.get()),
"shift_time_s": float(self.sh_time.get()),
"sync_rpm_band": float(self.sync_rb.get()),
"primary_ratio": float(self.primary.get()),
"front_sprocket_teeth": int(self.zf.get()),
"rear_sprocket_teeth": int(self.zr.get()),
"wheel_radius_m": float(self.rwheel.get()),
"drivetrain_efficiency": float(self.eta.get()),
"rpm_couple_gain": float(self.couple.get()),
"gear_ratios": [
0.0,
float(self.g1.get()),
float(self.g2.get()),
float(self.g3.get()),
float(self.g4.get()),
float(self.g5.get()),
float(self.g6.get())
],
"rolling_c": float(self.c_rr.get()),
"air_density": float(self.rho.get()),
"aero_cd": float(self.cd.get()),
"frontal_area_m2": float(self.A.get()),
"tire_mu_peak": float(self.mu_p.get()),
"tire_mu_slide": float(self.mu_s.get()),
"rear_static_weight_frac": float(self.w_rear.get()),
}}
self.sim.load_config(cfg)
def save_into_config(self, out: Dict[str, Any]) -> None:
out.setdefault("gearbox", {})
out["gearbox"].update({
"num_gears": int(self.gears_var.get()),
"reverse": bool(self.reverse_var.get()),
"kmh_per_krpm": [0.0] + [float(v.get()) for v in self.ratio_vars]
out.setdefault("gearbox", {}).update({
"clutch_max_torque_nm": float(self.cl_Tmax.get()),
"clutch_aggressiveness": float(self.cl_agr.get()),
"clutch_curve": self.cl_curve.get(),
"clutch_drag_nm": float(self.cl_drag.get()),
"shift_time_s": float(self.sh_time.get()),
"sync_rpm_band": float(self.sync_rb.get()),
"primary_ratio": float(self.primary.get()),
"front_sprocket_teeth": int(self.zf.get()),
"rear_sprocket_teeth": int(self.zr.get()),
"wheel_radius_m": float(self.rwheel.get()),
"drivetrain_efficiency": float(self.eta.get()),
"rpm_couple_gain": float(self.couple.get()),
"gear_ratios": [0.0, float(self.g1.get()), float(self.g2.get()), float(self.g3.get()),
float(self.g4.get()), float(self.g5.get()), float(self.g6.get())],
"rolling_c": float(self.c_rr.get()),
"air_density": float(self.rho.get()),
"aero_cd": float(self.cd.get()),
"frontal_area_m2": float(self.A.get()),
"tire_mu_peak": float(self.mu_p.get()),
"tire_mu_slide": float(self.mu_s.get()),
"rear_static_weight_frac": float(self.w_rear.get()),
})
def load_from_config(self, cfg: Dict[str, Any]) -> None:
g = cfg.get("gearbox", {})
n = int(g.get("num_gears", self.gears_var.get()))
self.gears_var.set(n); self.reverse_var.set(g.get("reverse", self.reverse_var.get()))
self._rebuild_ratios()
ratios = g.get("kmh_per_krpm") or ([0.0] + [v.get() for v in self.ratio_vars])
for i, v in enumerate(self.ratio_vars, start=1):
try: v.set(float(ratios[i]))
except Exception: pass
self.sim.load_config(cfg)
g = dict(GEARBOX_DEFAULTS); g.update(cfg.get("gearbox", {}))
self.cl_Tmax.set(g["clutch_max_torque_nm"])
self.cl_agr.set(g["clutch_aggressiveness"])
self.cl_curve.set(g.get("clutch_curve","linear"))
self.cl_drag.set(g["clutch_drag_nm"])
self.sh_time.set(g["shift_time_s"])
self.sync_rb.set(g["sync_rpm_band"])
self.primary.set(g["primary_ratio"])
self.zf.set(g["front_sprocket_teeth"])
self.zr.set(g["rear_sprocket_teeth"])
self.rwheel.set(g["wheel_radius_m"])
self.eta.set(g["drivetrain_efficiency"])
self.couple.set(g["rpm_couple_gain"])
ratios = list(g["gear_ratios"]) + [0.0]*7
self.g1.set(ratios[1]); self.g2.set(ratios[2]); self.g3.set(ratios[3])
self.g4.set(ratios[4]); self.g5.set(ratios[5]); self.g6.set(ratios[6])
self.c_rr.set(g["rolling_c"])
self.rho.set(g["air_density"])
self.cd.set(g["aero_cd"])
self.A.set(g["frontal_area_m2"])
self.mu_p.set(g["tire_mu_peak"])
self.mu_s.set(g["tire_mu_slide"])
self.w_rear.set(g["rear_static_weight_frac"])

View File

@@ -1,66 +0,0 @@
# simulator.py — Driveline & ECU-State
from __future__ import annotations
import threading
import time
from dataclasses import dataclass
@dataclass
class DrivelineModel:
idle_rpm: int = 1400
max_rpm: int = 9500
kmh_per_krpm: tuple = (0.0, 12.0, 19.0, 25.0, 32.0, 38.0, 45.0)
rpm_rise_per_s: int = 5000
rpm_fall_per_s: int = 3500
def target_rpm_from_throttle(self, throttle_pct: int) -> int:
t = max(0, min(100, throttle_pct)) / 100.0
return int(self.idle_rpm + t * (self.max_rpm - self.idle_rpm))
def speed_from_rpm_gear(self, rpm: int, gear: int) -> float:
if gear <= 0:
return 0.0
k = self.kmh_per_krpm[min(gear, len(self.kmh_per_krpm) - 1)]
return (rpm / 1000.0) * k
class EcuState:
"""Thread-sichere Zustandsmaschine (Gang, Gas, RPM, Speed)."""
def __init__(self, model: DrivelineModel | None = None) -> None:
self.model = model or DrivelineModel()
self._lock = threading.Lock()
self._gear = 0
self._throttle = 0
self._rpm = self.model.idle_rpm
self._speed = 0.0
self._last = time.monotonic()
def set_gear(self, gear: int) -> None:
with self._lock:
self._gear = max(0, min(6, int(gear)))
def set_throttle(self, thr: int) -> None:
with self._lock:
self._throttle = max(0, min(100, int(thr)))
def snapshot(self) -> tuple[int, int, int, float]:
with self._lock:
return self._gear, self._throttle, self._rpm, self._speed
def update(self) -> None:
now = time.monotonic()
dt = max(0.0, min(0.1, now - self._last))
self._last = now
with self._lock:
target = self.model.target_rpm_from_throttle(self._throttle)
if self._rpm < target:
self._rpm = min(self._rpm + int(self.model.rpm_rise_per_s * dt), target)
else:
self._rpm = max(self._rpm - int(self.model.rpm_fall_per_s * dt), target)
min_idle = 800 if self._gear == 0 and self._throttle == 0 else self.model.idle_rpm
self._rpm = max(min_idle, min(self._rpm, self.model.max_rpm))
target_speed = self.model.speed_from_rpm_gear(self._rpm, self._gear)
alpha = min(1.0, 4.0 * dt)
if self._gear == 0:
target_speed = 0.0
self._speed = (1 - alpha) * self._speed + alpha * target_speed
self._speed = max(0.0, min(self._speed, 299.0))

100
default.json Normal file
View File

@@ -0,0 +1,100 @@
{
"app": {
"can": { "interface": "vcan0", "resp_id": "0x7E8", "timeout_ms": 200 },
"ui": {
"font_family": "DejaVu Sans",
"font_size": 10,
"window": { "width": 1100, "height": 720 }
},
"logging": { "level": "INFO", "file": "logs/app.log" }
},
"sim": {
"engine": {
"idle_rpm": 1200,
"max_rpm": 9000,
"rpm_rise_per_s": 4000,
"rpm_fall_per_s": 3000,
"throttle_curve": "linear",
"starter_rpm_nominal": 250.0,
"starter_voltage_min": 10.5,
"start_rpm_threshold": 210.0,
"stall_rpm": 500.0,
"coolant_ambient_c": 20.0,
"idle_cold_gain_per_deg": 3.0,
"idle_cold_gain_max": 500.0,
"oil_pressure_idle_bar": 1.2,
"oil_pressure_slope_bar_per_krpm": 0.8,
"oil_pressure_off_floor_bar": 0.2,
"engine_power_kw": 40.0,
"torque_peak_rpm": 5500.0,
"throttle_plate_idle_min_pct": 6.0,
"throttle_plate_overrun_pct": 2.0,
"throttle_plate_tau_s": 0.08,
"torque_ctrl_kp": 1.2,
"torque_ctrl_ki": 0.6,
"rpm_jitter_idle_amp_rpm": 12.0,
"rpm_jitter_high_amp_rpm": 4.0,
"rpm_jitter_tau_s": 0.2,
"rpm_jitter_off_threshold_rpm": 250.0,
"throttle_pedal_pct": 0.0
},
"cooling": {
"thermostat_open_c": 85.0,
"thermostat_full_c": 100.0,
"rad_base_u_w_per_k": 220.0,
"ram_air_gain_per_kmh": 7.0,
"fan1_on_c": 98.0,
"fan1_off_c": 95.0,
"fan1_power_w": 120.0,
"fan1_airflow_gain": 300.0,
"fan2_on_c": 104.0,
"fan2_off_c": 100.0,
"fan2_power_w": 180.0,
"fan2_airflow_gain": 500.0,
"coolant_thermal_cap_j_per_k": 120000.0,
"oil_thermal_cap_j_per_k": 150000.0,
"oil_coolant_u_w_per_k": 80.0,
"oil_to_amb_u_w_per_k": 25.0,
"engine_heat_frac_to_coolant": 0.8
},
"dtc": {
"P0300": false,
"P0130": false,
"C0035": false,
"U0121": false
},
"vehicle": {
"type": "motorcycle",
"mass_kg": 210.0,
"abs": true,
"tcs": false
},
"electrical": {
"battery_capacity_ah": 8.0,
"battery_r_int_ohm": 0.02,
"alternator_reg_v": 14.2,
"alternator_rated_a": 20.0,
"alt_cut_in_rpm": 1500,
"alt_full_rpm": 4000
},
"gearbox": {
"num_gears": 6,
"reverse": false,
"kmh_per_krpm": [0.0, 12.0, 19.0, 25.0, 32.0, 38.0, 45.0]
}
}
}